Application of ultrasonic guided waves for non‑destructive testing of large and complex geometry engineering structures

Renaldas Raišutis1, Rymantas Kažys2, Liudas Mažeika3, Egidijus Žukauskas4,
Reimondas Šliteris5, Alfonsas Vladišauskas6

Ultrasound Institute, Kaunas University of Technology, Kaunas, Lithuania

1Corresponding author


Received 20 September 2017; accepted 27 September 2017



Abstract. The wide group of large engineering constructions made from welded metal components and modern composite materials during daily exploitation under non-stationary loads, continuous influence of vibrations and complicated environmental conditions have demand of periodical tests in order to avoid appearance and evolution of the defects. All of them have one common feature – large areas to be tested and the complex geometry. The objective is to improve air-coupled and contact type testing techniques for excitation and reception of appropriate modes of ultrasonic guided waves in large and complex structures. Also, to develop inspection techniques which enable to detect required types of internal defects. The air-coupled and contact ultrasonic techniques for investigation of large and complex geometry objects, such as composites for aerospace applications and petroleum tanks, have been developed. The investigation of propagation effects of ultrasonic guided (Lamb) waves in the plates of the tank floor has indicated relation between reconstructed properties of guided waves and expected presence of corrosion deposits.

Keywords: non-destructive testing, inspection, ultrasonic guided waves, air coupled, engineering structures, composite materials, petroleum tank.


[1]        Cawley P., Alleyne D. N. The use of Lamb waves for the long range inspection of large structures. Ultrasonics, Vol. 34, Issue 2, 1996, p. 287‑290.

[2]        Cawley P., Lowe M. J. S., Alleyne D. N., Pavlakovic B., Wilcox P. Practical long range guided wave testing: Application to pipe and rail. Material Evaluation, Vol. 61, Issue 1, 2003, p. 66‑74.

[3]        Chimenti D. E., Rokhlin S. I. Relationship between leaky Lamb modes and reflection coefficient zeroes for a fluid-coupled elastic layer. The Journal of the Acoustical Society of America, Vol. 88, Issue 3, 1990, p. 1603‑1611.

[4]        Kazys R., Demcenko A., Zukauskas E., Mazeika L. Air-coupled ultrasonic investigation of multi‑layered composite materials. Ultrasonics, Vol. 44, Issue 1, 2006, p. 819‑822.

[5]        Kazys R., Vladisauskas A., Zukauskas E. Wideband air-coupled ultrasonic transducers. Ultrasound, Vol. 3, Issue 52, 2004, p. 21‑28.

[6]        Kazys R., Mazeika L., Barauskas R., Raisutis R., Cicenas V., Demcenko A. 3D analysis of interaction of Lamb waves with defects in loaded steel plates. Ultrasonics, Vol. 44, Issue 1, 2006, p. 1127‑1130.

[7]        Mažeika L., Kažys R., Raišutis R., Demčenko A., Šliteris R. Long-range ultrasonic non-destructive testing of fuel tanks. DGZfP Proceedings BB 103-CD of ECNDT 2006, 2006, p. 1-8.

[8]        Mazeika L., Kazys R., Raisutis R., Sliteris R. Ultrasonic guided wave tomography for the inspection of the fuel tanks floor. International Journal of Materials and Product Technology, Vol. 41, Issues 1‑4, 2011, p. 128‑139.

Cite this article

Raišutis Renaldas, Kažys Rymantas, Mažeika Liudas, Žukauskas Egidijus, Šliteris Reimondas, Vladišauskas Alfonsas Application of ultrasonic guided waves for non‑destructive testing of large and complex geometry engineering structures. Vibroengineering PROCEDIA, Vol. 14, 2017, p. 87‑90.


© JVE International Ltd. Vibroengineering PROCEDIA. Oct 2017, Vol. 14. ISSN 2345-0533