An online monitoring, diagnosis and control system based on virtual instrument for CNC spindle

Pang Hong1, Wu Xing2, Liu Tao3, Liu Chang4

Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China

2Corresponding author

E-mail: 1panghong@aliyun.com, 2xingwu@aliyun.com, 3ynliutao@homtial.com, 4liuchang3385@gmail.com

Received 19 September 2017; accepted 27 September 2017

DOI https://doi.org/10.21595/vp.2017.19168

 

Abstract. In the field of precision machining, the spindle is the “heart component” of the machining center. The dynamic performance of the spindle will directly affect the performance of the machine and the machining accuracy of the products. In order to avoid the above problems, an online monitoring, diagnosis and control system based on virtual instrument is designed for spindle. The system can monitor the operation condition of CNC electric spindle in real‑time. Some classic signal processing and analysis methods are adopted such as time domain waveform, envelope spectrum and spectral kurtosis etc. The system is developed by LabVIEW language and on 107Z data acquisition system. The experiment platform for the system is a horizontal machining center of Dongyu CMV-1100A. The program is effective after preliminary test verification.

Keywords: electric spindle, online monitoring, virtual instrument, spectral kurtosis.

References

[1]        Yang Zhaojun, Chen Chuanhai, Chen Fei, Li Guofa Progress in the research of reliability technology of machine tools. Journal of Mechanical Engineering, Vol. 49, Issue 20, 2013, p. 130‑139.

[2]        http://www.most.gov.cn/mostinfo/xinxifenlei/gjkjgh/200811/t20081129_65774.htm, 2006.

[3]        http://www.docin.com/p-1264955005.html.

[4]        Zhou Ji Intelligent manufacturing – main direction of “Made in China 2025”. Mechanical Engineering, Vol. 26, Issue 17, 2015, p. 2273‑2284.

[5]        Vafaei S., Rahnejat H., Aini R. Vibration monitoring of high speed spindles using spectral analysis techniques. International Journal of Machine Tools and Manufacture, Vol. 42, Issue 11, 2002, p. 1223‑1234.

[6]        Cao H., Zhang X., Chen X. The concept and progress of intelligent spindles: a review. International Journal of Machine Tools and Manufacture, Vol. 112, 2016, p. 21‑52.

[7]        Liu F., Zhu H., Shao X., et al. Analysis of horizontal machining center field failure data based on generalized linear mixed model – a case study. Quality and Reliability Engineering International, Vol. 27, Issue 2, 2015, p. 239‑248.

[8]        Chang C. F., Chen J. J. Vibration monitoring of motorized spindles using spectral analysis techniques. Mechatronics, Vol. 19, Issue 5, 2009, p. 726‑734.

[9]        Kegg R. L. One-line machine and process diagnostics. CIRP Annals, Vol. 33, Issue 2, 1984, p. 469‑473.

[10]     Zhou Dezhao, Zhang Jinming, Jiang Zhinong LabVIEW – Based data acquisition and processing of the rotor vibration signal. Instrumentation and Measurement, Vol. 24, Issue 3, 2005, p. 62‑64.

[11]     Sawalhi N., Randall R. B., Endo H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis. Mechanical Systems and Signal Processing, Vol. 21, Issue 6, 2007, p. 2616‑2633.

[12]     Antoni J., Randall R. B. The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mechanical Systems and Signal Processing, Vol. 20, Issue 2, 2006, p. 308‑331.

Cite this article

Hong Pang, Xing Wu, Tao Liu, Chang Liu An online monitoring, diagnosis and control system based on virtual instrument for CNC spindle. Vibroengineering PROCEDIA, Vol. 14, 2017, p. 70‑75.

 

© JVE International Ltd. Vibroengineering PROCEDIA. Oct 2017, Vol. 14. ISSN 2345-0533