A new model for calculating time-varying gearmesh stiffness

Yaguo Lei1, Delong Wang2, Zongyao Liu3, Xiao Yang4

Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System,
School of Mechanical Engineering, Xiían Jiaotong University, Xiían, 710049, China

1Corresponding author

E-mail: 1yaguolei@mail.xjtu.edu.cn, 2wangdelong@stu.xjtu.edu.cn, 3liuzongyao2009@126.com, 4yx_csu@163.com

Received 10 September 2017; accepted 18 September 2017

DOI https://doi.org/10.21595/vp.2017.19139


Abstract. Time-varying gearmesh stiffness (TVGS) is the main cause of gear vibration, and its accuracy affects the responses of dynamic models. An exponential curve model based on the Saint Venantís Principle is proposed to calculate the gearmesh stiffness of cracked spur gears in this paper. With the proposed model, the TVGS under the circumstances of healthy condition and four crack cases are computed, whose results have a good agreement with those of finite element method (FEM). Therefore, the exponential curve model can be used to estimate the TVGS and an alternative to FEM in gearmesh stiffness calculation is provided.

Keywords: time-varying gearmesh stiffness, tooth crack, exponential curve model.


[1]        Chaari F., Fakhfakh T., Haddar M. Dynamic analysis of a planetary gear failure caused by tooth pitting and cracking. Journal of Failure Analysis and Prevention, Vol. 6, 2006, p. 73‑78.

[2]        Cooley C. G., Parker R. G. A review of planetary and epicyclic gear dynamics and vibrations research. ASME Applied Mechanics Reviews, 66, p. 2014‑40804.

[3]        Lei Y., Liu Z., Lin J., Lu F. Phenomenological models of vibration signals for condition monitoring and fault diagnosis of epicyclic gearboxes. Journal of Sound and Vibration, Vol. 369, 2016, p. 266‑281.

[4]        Lei Y., Lin J., Zuo M. J., He Z. Condition monitoring and fault diagnosis of planetary gearboxes: A review. Measurement, Vol. 48, 2014, p. 292‑305.

[5]        Zouari S., Maatar M., Fakhfakh T., Haddar M. Three-dimensional analyses by finite element method of a spur gear: effect of cracks in the teeth foot on the mesh stiffness. Journal of Failure Analysis and Prevention, Vol. 7, 2007, p. 475‑481.

[6]        Pandya Y., Parey A. Experimental investigation of spur gear tooth mesh stiffness in the presence of crack using photoelasticity technique. Engineering Failure Analysis, Vol. 34, 2013, p. 488‑500.

[7]        Yang D., Lin J. Hertzian damping, tooth friction and bending elasticity in gear impact dynamics. ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 109, 1987, p. 189‑196.

[8]        Tian X. Dynamic Simulation for System Response of Gearbox Including Localized Gear Faults. University of Alberta, Edmonton, Alberta, Canada, 2005.

[9]        Liang X., Zuo M. J., Pandey M. Analytically evaluating the influence of crack on the mesh stiffness of a planetary gear set. Mechanism and Machine Theory, Vol. 76, 2014, p. 20‑38.

[10]     Chen Z., Shao Y. Mesh stiffness calculation of a spur gear pair with tooth profile modification and tooth root crack. Mechanism and Machine Theory, Vol. 62, 2013, p. 63‑74.

[11]     Ma H., Song R., Pang X., Wen B. Time-varying mesh stiffness calculation of cracked spur gears. Engineering Failure Analysis, Vol. 44, 2014, p. 179‑194.

[12]     Christides S., Barr A. One-dimensional theory of cracked Bernoulli-Euler beams. International Journal of Mechanical Sciences, Vol. 26, 1984, p. 639‑648.

[13]     Carneiro S. H., Inman D. J. Continuous model for the transverse vibration of cracked Timoshenko beams. ASME Journal of Vibration and Acoustics, Vol. 124, 2002, p. 310‑320.

[14]     Hou C., Lu Y. Identification of cracks in thick beams with a cracked beam element model. Journal of Sound and Vibration, Vol. 385, 2016, p. 104‑124.


Cite this article

Lei Yaguo, Wang Delong, Liu Zongyao, Yang Xiao A new model for calculating time‑varying gearmesh stiffness. Vibroengineering PROCEDIA, Vol. 14, 2017, p. 334‑339.


© JVE International Ltd. Vibroengineering PROCEDIA. Oct 2017, Vol. 14. ISSN 2345-0533