Kernel PCA in nonlinear visualization of a healthy and a faulty planetary gearbox data

Anna M. Bartkowiak1, Radoslaw Zimroz2

1Wroclaw University, Institute of Computer Science, 50-383, Wroclaw, Poland, (retired)

2Wroclaw University of Technology, Faculty of GeoEngineering Mining and Geology,
50-421, Wroclaw, Poland

1Corresponding author

E-mail: 1aba@cs.uni.wroc.pl, 2radoslaw.zimroz@pwr.edu.pl

Received 30 August 2017; accepted 31 August 2017

DOI https://doi.org/10.21595/vp.2017.19032

 

Abstract. PCA (Principal Component Analysis) is a powerful method for investigating the dimensionality and extracting structure from multi-dimensional data, however it extracts only linear projections. More general projections – accounting for possible non-linearities among the observed variables – can be obtained using kPCA (Kernel PCA), that performs the same task, however working with an extended feature set. We consider planetary gearbox data given as two 15-dimensional data sets, one coming from a healthy and the other from a faulty planetary gearbox. For these data both the PCA (with 15 variables) and the kPCA (using indirectly 500 variables) is carried out. It appears that the investigated PC-s are to some extent similar; however, the first three kernel PC-s show the data structure with more details.

Keywords: visualization of MD data, principal components, PCA and kPCA, kernel trick.

References

[1]        Jolliffe I. T. Principal Component Analysis. 2nd Ed., Springer, New York 2002.

[2]        Zimroz R., Bartkowiak A. Two simple multivariate procedures for monitoring planetary gearboxes in non-stationary operating conditions. Mechanical Systems and Signal Processing, Vol. 38, Issue 1, 2013, p. 237‑247.

[3]        Wodecki J., Stefaniak P. K., Obuchowski J., Wylomanska A., Zimroz R. Combination of principal component analysis and time-frequency representations of multichannel vibration data for gearbox fault detection. Journal of Vibroengineering, Vol. 18, Issue 4, 2016, p. 2167‑2175.

[4]        Schölkopf B., Smola A., Müller K. R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, Vol. 10, Issue 5, 1998, p. 1299‑1319.

[5]        Schölkopf B., Mika S., Burges Ch J. C., Knirsch P. H., Müller, K. R., Rätsch G., Smola A. Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks, Vol. 10, Issue 5, 1999, p. 1000‑1017.

[6]        Bartelmus W., Zimroz R. A New feature for monitoring the condition of gearboxes in non-stationary operating systems. Mechanical Systems and Signal Processing, Vol. 23, Issue 5, 2009, p. 1528‑1534.

[7]        Shawe Taylor J., Christianini N. Kernel Methods for Pattern Analysis. Cambridge University Press, UK, 2004.

[8]        Wang F., Chen X., Dun B., Wang B., Yan D., Zhu H. Rolling bearing reliability assessment via kernel principal component analysis and Weibull proportional Hazard model. Shock and Vibration, 2017, https://doi.org/10.1155/2017/6184190.

[9]        Mika S., Rätsch G., Weston J., Schölkopf B., Müller K. R. Fisher discriminant analysis with Kernels. Proceedings of the 1999 IEEE Signal Processing Society Workshop, 1999, p. 41-48.

Cite this article

Bartkowiak Anna M., Zimroz Radoslaw Kernel PCA in nonlinear visualization of a healthy and a faulty planetary gearbox data. Vibroengineering PROCEDIA, Vol. 13, 2017, p. 62‑66.

 

© JVE International Ltd. Vibroengineering PROCEDIA. Sep 2017, Vol. 13. ISSN 2345-0533