Image hiding in dynamic unstable self-organizing patterns

Martynas Vaidelys1, Lu Chen2, Yujie Cheng3, Gintare Vaideliene4

1Research Group for Mathematical and Numerical Analysis of Dynamical Systems,
Kaunas University of Technology, Studentu 50-146, Kaunas LT-51368, Lithuania

2, 3School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

2, 3Science and Technology on Reliability and Environmental Engineering Laboratory,
Beijing 100191, China

4Department of Applied Mathematics, Kaunas University of Technology,
Studentu 50, Kaunas LT-51368, Lithuania

1Corresponding author


Received 19 September 2017; accepted 9 October 2017



Abstract. A digital image hiding scheme based on the breakup of spiral waves is presented in this paper. This scheme does not require initial conditions perturbation and embedding of the secret image is done during the evolution of a self-organizing pattern. Such features increase the security, but still enable an effective decoding of the secret image. The concept of the order of a 2D linear recurrent sequences are used to estimate the complexity of the pattern and select the optimal timing required for the pattern to complete. Computational experiments are used to demonstrate the properties and efficiency of the proposed scheme.

Keywords: self-organizing pattern, spiral wave, information hiding, linear recurrent sequence, image complexity.


[1]        Saunoriene L., Ragulskis M. Secure steganographic communication algorithm based on self-organizing patterns. Physical Review E, Vol. 84, 2011, p. 056213.

[2]        Ishimura K., Komuro K., Schmid A., Asai T., Motomura M. Image steganography based on reaction diffusion models toward hardware implementation. Nonlinear Theory and its Applications, IEICE, Vol. 5, Issue 4, 2014, p. 456‑465.

[3]        Ziaukas P., Ragulskis T., Ragulskis M. Communication scheme based on evolutionary spatial games. Physica A, Vol. 403, 2014, p. 177‑188.

[4]        Vaidelys M., Ragulskiene J., Ziaukas P., Ragulskis M. Image hiding scheme based on the atrial fibrillation model. Applied Sciences, Vol. 5, Issue 4, 2015, p. 1980‑1991.

[5]        Vaidelys M., Ziaukas P., Ragulskis M. Competitively coupled maps for hiding secret visual information. Physica A, Vol. 443, 2016, p. 91‑97.

[6]        Barkley D., Kness M., Tuckerman L. S. Spiral-wave dynamics in a simple model of excitable media: The transition from simple to compound rotation. Physical Review A, Vol. 42, 1990, p. 2489‑2492.

[7]        Dowle M., Mantel R. M., Barkley D. Fast simulations of waves in three-dimensional excitable media. International Journal of Bifurcation and Chaos, Vol. 7, 1997, p. 2529‑2546.

[8]        Bär M., Eiswirth M. Turbulence due to spiral breakup in a continuous excitable medium. Physical Review E, Vol. 48, 1993, p. 1635‑1637.

[9]        Barkley D. Barkley model. Scholarpedia, Vol. 3, 11, p. 2008‑1877.

[10]      Vaidelys M., Lu C., Cheng Y., Ragulskis M. Digital image communication scheme based on the breakup of spiral waves. Physica A: Statistical Mechanics and its Applications, Vol. 467, 2017, p. 1‑10.

[11]     Telksnys T., Navickas Z., Vaidelys M., Ragulskis M. The order of a 2-sequence and the complexity of digital images. Advances in Complex Systems, Vol. 19, 2016, 1650010.

[12]     Landauskas M., Navickas Z., Vainoras A., Ragulskis M. Weighted moving averaging revisited: an algebraic approach. Computational and Applied Mathematics, 2016, 1-14.

Cite this article

Vaidelys Martynas, Chen Lu, Cheng Yujie, Vaideliene Gintare Image hiding in dynamic unstable self‑organizing patterns. Vibroengineering PROCEDIA, Vol. 14, 2017, p. 328‑333.


© JVE International Ltd. Vibroengineering PROCEDIA. Oct 2017, Vol. 14. ISSN 2345-0533