35. Dynamic problem in 3D thermoelastic half‑space with rotation in context of G-N type II and type III

S. Santra1, A. Lahiri2, N. C. Das3

1Gargi Memorial Institute of Technology, Kolkata, 700144, India

2, 3Department of Mathematics, Jadavpur University, Kolkata, 700032, India

1Corresponding author

E-mail: 1sutapasantra.ismu.math@gmail.com, 2lahiriabhjit2000@yahoo.com, 3ncdasmaths@gmail.com

Received 29 December 2016; received in revised form 17 January 2017; accepted 18 January 2017

DOI https://doi.org/10.21595/mme.2017.18143


Abstract. In this paper, comparison between G-N model of type II (without energy dissipation) and G-N model of type III (with energy dissipation) has been shown in a three dimensional thermoelastic half space with rotation subjected to time dependent heat source on the traction free boundary. Eigenvalue methodology has been adopted to solve the equations resulting from the application of the Normal mode analysis to the non-dimensional coupled equations. Variation of the numerically computed values of thermal stresses and temperature with and without rotation has been illustrated graphically.

Keywords: anaisotropic half space, G-N model II and III, normal mode analysis, eigenvalue approach.


[1]        Biot M. A. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, Vol. 27, 1956, p. 240‑253.

[2]        Ignaczak J. Uniqueness in generalized thermoelasticity. Journal of Thermal Stresses, Vol. 2, 1979, p. 171‑175.

[3]        Dhaliwal R. S., Sherief H. H. Generalized thermoelasticity for anisotropic media. Quarterly of Applied Mathematics, Vol. 33, 1980, p. 1‑8.

[4]        Ignaczak J. A note on uniqueness in thermoelasticity with one relaxation time. Journal of Thermal Stresses, Vol. 5, 1982, p. 257‑263.

[5]        Pal P. K., Acharya D. Effect of inhomogeneity on the surface waves in anisotropic media. Sadhana, Vol. 23, 1998, p. 247‑258.

[6]        Green A. E., Naghdi P. M. A re-examination of the basic postulate of thermomechanics. Proceedings of the Royal Society of London A, Vol. 432, 1991, p. 171‑194.

[7]        Green A. E., Naghdi P. M. On undamped heat waves in an elastic solid. Journal of Thermal Stresses, Vol. 15, 1992, p. 253‑264.

[8]        Green A. E., Naghdi P. M. Thermoelasticity without energy dissipation. Journal of Elasticity, Vol. 31, 1993, p. 189‑208.

[9]        Kar A., Kanoria M. Thermoelastic interaction with energy dissipation in an infinitely extended thin plate containing a circular hole. Far East Journal of Applied Mathematics, Vol. 24, 2006, p. 201‑217.

[10]     Youssef H. M. On a theory of two temperature generalized thermoelasticity. IMA Journal of Applied Mathematics, Vol. 71, 2006, p. 383‑390.

[11]     Abd-Alla A. M., Abo-Dahab S. M. Time-harmonic sources in a generalized magnetothermoviscoelastic continuum with and without energy dissipation. Applied Mathematical Modeling, Vol. 33, 2009, p. 2388‑2402.

[12]     Lahiri A., Das N. C., Sarkar S., Das M. Matrix method of solution of coupled differential equations and its application to generalized thermoelasticity. Bulletin of Calcutta Mathematical Society, Vol. 101, 2009, p. 571‑590.

[13]     Sarkar N., Lahiri A. A three dimensional thermoelastic problem for a half- space without energy dissipation. International Journal of Engineering Science, Vol. 51, 2012, p. 310‑325.

[14]     Pal P. C., Kumar S., Mandal D. Wave propagation in an inhomogeneous anisotropic generalized thermoelastic solid. Journal of Thermal Stresses, Vol. 37, 2014, p. 817‑831.

[15]     Santra S., Das N. C., Kumar R., Lahir A. Three dimensional fractional order generalized thermoelastic problem under effect of rotation in a half space. Journal of Thermal Stresses Vol. 38, 2015, p. 309‑324.

Cite this article

Santra S., Lahiri A., Das N. C. Dynamic problem in 3D thermoelastic half‑space with rotation in context of G‑N type II and type III. Mathematical Models in Engineering, Vol. 3, Issue 1, 2017, p. 58‑70.


Mathematical Models in Engineering. June 2017, Volume 3, Issue 1

JVE International Ltd. ISSN Print 2351-5279, ISSN Online 2424-4627, Kaunas, Lithuania