24. Bending of symmetric cross-ply multilayered plates in hygrothermal environments

Ashraf M. Zenkour1, Rabab A. Alghanmi2

1Department of Mathematics, Faculty of Science, King Abdulaziz University,
P.O. Box 80203, Jeddah 21589, Saudi Arabia

1Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt

2Department of Mathematics, College of Science and Art, King Abdulaziz University,
Rabigh 21911, Saudi Arabia

1Corresponding author

E-mail: 1zenkour@kau.edu.sa, 1zenkour@sci.kfs.edu.eg, 2alharbiah2008@hotmail.com

Received 14 July 2016; accepted 18 July 2016

Abstract. The bending analysis of symmetric cross-ply laminated plates in a hygrothermal environment is presented. The sinusoidal shear deformation plate theory is used for this purpose. It enables the trial and testing of different through-the-thickness transverse shear-deformation distributions and, among them, strain distributions that do not involve the undesirable implications of the transverse shear correction factors. The governing differential equations for the bending of laminated plates are obtained using various plate theories. Displacement functions that identically satisfy boundary conditions are used to reduce the governing equations to a set of coupled ordinary differential equations with variable coefficients. Numerical results for deflection and stresses are presented. The effect of different types of sinusoidal hygrothermal/thermal loadings is investigated. The influence various parameters such as material anisotropy, aspect ratio, side‑to‑thickness ratio, thermal expansion coefficients ratio and stacking sequence on the hygrothermally induced response is also investigated. A concluding remark is made.

References

[1]        Adams D. F., Miller A. K. Hygrothermal micro stress in a unidirectional composite exhibiting inelastic materials behavior. Journal of Composite Materials, Vol. 11, Issue 3, 1977, p. 285‑299.

[2]        Ishikawa T., Koyama K., Kobayayaski S. Thermal expansion coefficients of unidirectional composites. Journal of Composite Materials, Vol. 12, 1978, p. 153‑168.

[3]        Strife J. R., Prewo K. M. The thermal expansion behavior of unidirectional and bidirectional Kevlar/epoxy composites. Journal of Composite Materials, Vol. 13, Issue 4, 1979, p. 264‑267.

[4]        Whitney J. M., Ashton J. E. Effect of environment on the elastic response of layered composite plates. AIAA Journal, Vol. 9, Issue 9, 1971, p. 1708‑1713.

[5]        Pipes R. B., Vinson J. R., Chou T. W. On the hygrothermal response of laminated composite systems. Journal of Composite Materials, Vol. 10, Issue 2, 1976, p. 129‑148.

[6]        Sereira Z., Tounsi A., Adda-Bedia E. A. Effect of the cyclic environmental conditions on the hygrothermal behavior of the symmetric hybrid composites. Mechanics of Advanced Materials and Structures, Vol. 13, Issue 3, 2006, p. 237‑248.

[7]        Yifeng Z., Yu W. A variational asymptotic approach for hygrothermal analysis of composite laminates. Composite Structures, Vol. 93, Issue 12, 2011, p. 3229‑3238.

[8]        Upadhyay A. K., Pandey R., Shukla K. K. Nonlinear flexural response of laminated composite plates under hygro-thermo-mechanical loading. Communications in Nonlinear Science and Numerical Simulation, Vol. 15, Issue 9, 2010, p. 2634‑2650.

[9]        Bahrami A., Nosier, A. Interlaminar hygrothermal stresses in laminated plates. International Journal of Solids and Structures, Vol. 44, Issues 25‑26, 2007, p. 8119‑8142.

[10]     Mahato P. K., Maiti D. K. Aeroelastic analysis of smart composite structures in hygro-thermal environment. Composite Structures, Vol. 92, Issue 4, 2010, p. 1027‑1038.

[11]     Shen H. S. Hygrothermal effects on the postbuckling of shear deformable laminated plates. International Journal of Mechanical Sciences, Vol. 43, Issue 5, 2001, p. 1259‑1281.

[12]     Reddy J. N. Mechanics of Laminated Composite Plates. CRC Press, Boca Raton, FL, 1997.

[13]     Patel B. P., Ganapathi M., Makhecha D. P. Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory. Composite Structures, Vol. 56, Issue 1, 2002, p. 25‑34.

[14]     Singh B. N., Verma V. K. Hygrothermal effects on the buckling of laminated composite plates with random geometric and material properties. Journal of Reinforced Plastics and Composites, Vol. 28, Issue 4, 2009, p. 409‑427.

[15]     Lo S. H., Zhen W., Cheung Y. K., Wanji C. Hygrothermal effects on multilayered composite plates using a refined higher order theory. Composite Structures, Vol. 92, Issue 3, 2010, p. 633‑646.

[16]     Zenkour A. M. Hygro-thermo-mechanical effects on FGM plates resting on elastic foundations. Composite Structures, Vol. 93, Issue 1, 2010, p. 234‑238.

[17]     Zenkour A. M. Buckling of fiber-reinforced viscoelastic composite plates using various plate theories. Journal of Engineering Mathematics, Vol. 50, Issue 1, 2004, p. 75‑93.

[18]     Reddy J. N. A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics, Vol. 51, Issue 4, 1984, p. 745‑752.

[19]     Zenkour A. M. Analytical solution for bending of cross-ply laminated plates under thermos‑mechanical loading. Composite Structures, Vol. 65, Issues 3‑4, 2004, p. 367‑379.

[20]     Bogdanovich A. E., Pastore C. M. Mechanics of Textile and Laminated Composites with Applications to Structural Analysis. Chapman and Hall, New York, 1996.