16. Sensitivity of dynamic response of a clamped functionally graded magneto-electro-elastic plate to its elastic parameters

G. Q. Xie1, J. P. Wang2, Q. L. Zhang3

1, 3Civil Engineering College, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China

2Mianyang Vocational and Technical College, Mianyang, 411201, P. R. China

1Corresponding author

E-mail: 1xiaoyuanyixiong@163.com, 2474114426@qq.com, 3466419162@qq.com

(Received 18 June 2015; received in revised form 17 December 2015; accepted 19 January 2016)

Abstract. Sensitivity of dynamic response of a clamped functionally graded magneto‑electro‑elastic plate to its elastic parameters has been carried out by combining analytical method with finite element method. The functionally graded material parameters are assumed to obey a polynomial law in the thickness direction. A polynomial agreement with the clamped boundary condition is adopted in the plane of the plate and finite element method is used across the thickness of the plate such a way that the three-dimensional characteristics of the solution are preserved. The coupled electromagnetic dynamic characteristics of a functionally graded magneto‑electro‑elastic plate are determined by its dynamics differential equation modeled with displacement components, electric potential and magnetic potential as nodal degree of freedom. Sensitivity of dynamic response of a functionally graded magneto-electro-elastic plate to its elastic parameters has been studied. Dynamic response sensitivity analysis of a clamped functionally graded magneto‑electro‑elastic plate is useful for the optimization designs, nondestructive testing and inverse techniques of smart materials.

Keywords: dynamic response sensitivity, clamped FGM magneto-electro-elastic plate, elastic parameters, analytical method, finite element method.

References

[1]        Akbarzadeh A. H., Babaei M. H., Chen Z. T. The thermo-magnetoelectroelastic behavior of rotating cylinders resting on an elastic foundation under hydrothermal loading. Smart Materials and Structures, Vol. 20, 2011, p. 065008

[2]        Buchanan G. R. Layered verses multiphase magneto-electro-elastic composites. Composites Part B: Engineering, Vol. 35, Issue 5, 2004, p. 413‑420.

[3]        Moleiro F., Mota Soares C. M., Mota Soares C. A., et al. Layerwise mixed models for analysis of multilayered piezoelectric composite plates using least-squares formulation. Composite Structures, Vol. 119, 2015, p. 134‑149.

[4]        Giannopoulos G., Santafe F., et al. Thermal, electrical, mechanical coupled mechanics for initial buckling analysis of smart plates and beams using discrete layer kinematics. International Journal of Solids and Structures, Vol. 44, Issues 14‑15, 2007, p. 4707‑4722.

[5]        Harshe G., Dougherty J. P., Newnham R. E. Theoretical modeling of multilayered magneto‑electric composites. International Journal of Applied Electromagnetics and Mechanics, Vol. 4, Issue 2, 1993, p. 145‑159.

[6]        Du Jianke, Xian Kai, Wang Ji SH surface acoustic wave propagation in a cylindrically layered piezomagnetic/piezoelectric structure. Ultrasonics, Vol. 49, 2009, p. 131‑138.

[7]        Sedighi M. R., Shakeri M. A three-dimensional elasticity solution of functionally graded piezoelectric cylindrical panels. Smart Materials and Structures, Vol. 18, 2009, p. 055015.

[8]        Saadatfar M., Aghaie Khafri M. Hydrothermosmagnetoelectro elastic analysis of a functionally graded magneto-electroelastic hollow sphere resting on an elastic foundation. Smart Materials and Structures, Vol. 24, 2014, p. 035004.

[9]        Nan C. W. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Physical Review B, Vol. 50, Issue 9, 1994, p. 6082‑6088.

[10]     Pan E. Exact solution for simply supported and multilayered magneto-electro-elastic plates. Journal of Applied Mechanics, Vol. 68, Issue 4, 2001, p. 608‑618.

[11]     Pan E., Heyliger P. R. Free vibrations of simply supported and multilayered magneto‑electro‑elastic plates. Journal of Sound and Vibration, Vol. 252, Issues 3‑2, 2002, p. 429‑442.

[12]     Rajesh Bhangale K., Ganesan N. Static analysis of simply supported functionally graded and layered magneto‑electro‑elastic plates. International Journal of Solids and Structures, Vol. 43, Issue 10, 2006, p. 3230‑3253.

[13]     Wang J., Chen L., Fang S. State vector approach to analysis of multilayered magneto‑electro‑elastic plates. International Journal of Solids and Structures, Vol. 40, Issue 7, 2003, p. 1669‑1680.

[14]     Yansong Li, Jingjun Zhang Free vibration analysis of magnetoelectroelastic plate resting on a Pasternak foundation. Smart Materials and Structures, Vol. 23, 2014, p. 025002.

[15]     Yu Pang, Jin Shan Gao, Jin Xi Liu SH wave propagation in magnetic‑electric periodically layered plates. Ultrasonics, Vol. 54, Issue 5, 2014, p. 1341‑1349.

Cite this article

Xie G. Q., Wang J. P., Zhang Q. L. Sensitivity of dynamic response of a clamped functionally graded magneto‑electro-elastic plate to its elastic parameters. Mathematical Models in Engineering, Vol. 2, Issue 1, 2016, p. 18‑26.

 

Mathematical Models in Engineering. June 2016, Volume 2, Issue 1

JVE International Ltd. ISSN Print 2351-5279, ISSN Online 2424-4627, Kaunas, Lithuania