2131. Nonlinear factor analysis and its application to acoustical source separation and identification

Wei Cheng1, Lin Gao2, Jie Zhang3, Jiantao Lu4

1, 3, 4State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University,
Xi’an 710049, Shaanxi, China

2Institute of Biomedical Engineering, Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China

2Corresponding author

E-mail: 1chengw@xjtu.edu.cn, 2gaolin2013@xjtu.edu.cn, 3epicureans@163.com, 4lujiantao1990@stu.xjtu.edu.cn

Received 20 February 2016; received in revised form 15 July 2016; accepted 19 July 2016

DOI https://doi.org/10.21595/jve.2016.17432

Abstract. Acoustical signals of mechanical systems can provide original information of operating conditions, and thus benefit for machinery condition monitoring and fault diagnosis. However, acoustical signals measured by sensors are mixed signals of all the sources, and normally it is impossible to be directly used for acoustical source identification or feature extraction. Therefore, this paper presents nonlinear factor analysis (NLFA) and applies it to acoustical source separation and identification of mechanical systems. The effects by numbers of hidden neurons and mixed signals on separation performances of NLFA are comparatively studied. Furthermore, acoustical signals from a test bed with shell structures are separated and identified by NLFA and correlation analysis, and the effectiveness of NLFA on acoustical signals is validated by both numerical case studies and an experimental case study. This work can benefit for machinery noise monitoring, reduction and control, and also provide pure source information for machinery condition monitoring or fault diagnosis.

Keywords: nonlinear factor analysis, source separation and identification, feature extraction, correlation analysis, noise monitoring and control.

References

[1]        Radzevich S. P. Technological methods for noise/vibration reduction in driveline/transmission of trucks and all-wheel-drive vehicles. International Journal of Vehicle Noise and Vibration, Vol. 2, Issue 4, 2006, p. 283‑291.

[2]        Denli H., Sun J. Q. Structural-acoustic optimization of sandwich cylindrical shells for minimum interior sound transmission. Journal of Sound and Vibration, Vol. 316, Issue 1, 2008, p. 32‑49.

[3]        Xin F. X., Lu T. J. Analytical modeling of sound transmission across finite aeroelastic panels in convected fluids. Journal of the Acoustical Society of America, Vol. 128, Issue 3, 2010, p. 1097‑1107.

[4]        Nennig B., Ben Tahar M., Perrey-Debain E. A displacement-pressure finite element formulation for analyzing the sound transmission in ducted shear flows with finite poroelastic lining. Journal of the Acoustical Society of America, Vol. 130, Issue 1, 2011, p. 42‑51.

[5]        Bravo T., Maury C., Pinhede C. Sound absorption and transmission through flexible micro‑perforated panels backed by an air layer and a thin plate. Journal of the Acoustical Society of America, Vol. 131, Issue 5, 2012, p. 3853‑3863.

[6]        Yin J. F., Hopkins C. Prediction of high-frequency vibration transmission across coupled, periodic ribbed plates by incorporating tunneling mechanisms. Journal of the Acoustical Society of America, Vol. 133, Issue 4, 2013, p. 2069‑2081.

[7]        Fleury R., Alu A. Extraordinary sound transmission through density-near-zero ultranarrow channels. Physical Review Letters, Vol. 111, Issue 5, 2013, p. 055501.

[8]        Kim C. J., Oh J. S., Park C. H. Modelling vibration transmission in the mechanical and control system of a precision machine. CIRP Annals Manufacturing Technology, Vol. 63, Issue 1, 2014, p. 349‑352.

[9]        Yu X., Cheng L., Guyader J. L. On the modeling of sound transmission through a mixed separation of flexible structure with an aperture. Journal of the Acoustical Society of America, Vol. 135, Issue 5, 2014, p. 2785‑2796.

[10]     Liu Y. Sound transmission through triple-panel structures lined with poroelastic materials. Journal of Sound and Vibration, Vol. 339, 2015, p. 376‑395.

[11]     Cheng W., Lee S., Zhang Z. S., He Z. J. Independent component analysis based source number estimation and its comparison for mechanical systems. Journal of Sound and Vibration. Vol. 331, Issue 23, 2012, p. 5153‑5167.

[12]     Cheng W., Zhang Z. S., Cao H. R., et al. A comparative study of information-based source number estimation methods and experimental validations on mechanical systems. Sensors, Vol. 14, Issue 5, 2014, p. 7625‑7646.

[13]     Cheng W., Zhang Z. S., Lee S., He Z. J. Investigations of denoising source separation technique and its application to source separation and identification of mechanical vibration signals. Journal of Vibration and Control, Vol. 20, Issue 14, 2014, p. 2100‑2117.

[14]     Cheng W., He Z. J., Zhang Z. S. A comprehensive study of vibration signals for a thin shell structure using enhanced independent component analysis and experimental validation. Journal of Vibration and Acoustics – Transactions of the ASME. Vol. 136, Issue 4, 2014.

[15]     Cheng W., Zhang Z. S., Lee S., He Z. J. Source contribution evaluation of mechanical vibration signals via enhanced independent component analysis. Journal of Manufacturing Science and Engineering-Transactions of the ASME, vol. 134, Issue 2, 2012.

[16]     Zhang E. L., Antoni J., Dong B., Snoussi H. Bayesian space-frequency separation of wide‑band sound sources by a hierarchical approach. Journal of the Acoustical Society of America, Vol. 132, Issue 5, 2012, p. 3240‑3250.

[17]     Hioka Y., Furuya K., Kobayashi K., Niwa K., Haneda Y. Underdetermined sound source separation using power spectrum density estimated by combination of directivity gain. IEEE Transactions on Audio Speech and Language Processing, Vol. 21, Issue 5, 2013, p. 1240‑1250.

[18]     Bin D., Antoni J., Erliang Z. Blind separation of sound sources from the principle of least spatial entropy. Journal of Sound and Vibration, Vol. 333, Issue 9, 2014, p. 2643‑2668.

[19]     Han T. J., Kim K. J., Park H. Location estimation of predominant sound source with embedded source separation in amplitude-panned stereo signal. IEEE Signal Processing Letters, Vol. 22, Issue 10, 2015, p. 1685‑1688.

[20]     McDonald R. P. A general-approach to nonlinear factor-analysis. Psychometrika, Vol. 27, Issue 4, 1962, p. 397‑415.

[21]     McDonald R. P. Numerical methods for polynomial models in nonlinear factor analysis. Psychometrika, Vol. 32, Issue 2, 1967, p. 77‑77.

[22]     Jochum C., Kowalski B. R. A combined linear and nonlinear factor analysis program package for chemical data evaluation. Analytica Chimica ACTA, Computer Techniques and Optimization, Vol. 133, Issue 4, 1981, p. 583‑590.

[23]     Etezadiamoli J., McDonald R. P. A 2nd generation nonlinear factor-analysis. Psychometrika, Vol. 48, 1983, p. 315‑342.

[24]     Zhu H. T., Lee S. Y. Statistical analysis of nonlinear factor analysis models. British Journal of Mathematical and Statistical Psychology, Vol. 52, Issue 2, 1999, p. 225‑242.

[25]     Valpola H. Bayesian ensemble learning for nonlinear factor analysis. ACTA Polytechnica Scandinavica, Mathematics and Computing Series, 2000, p. 6‑54.

[26]     Yalcin I., Amemiya Y. Nonlinear factor analysis as a statistical method. Statistical Science, Vol. 16, Issue 2, 2001, p. 275‑294.

[27]     Jones C. S. A nonlinear factor analysis of S&P 500 index option returns. Journal of Finance, Vol. 61, Issue 5, 2006, p. 2325‑2363.

[28]     Lamsa V., Kullaa J. Nonlinear factor analysis in structural health monitoring to remove environmental effects. 6th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 2007, p. 1092‑1099.

[29]     Douglas S. C. Detection of aliasing in image sequences using nonlinear factor analysis. Proceedings of the 10th International Conference on Latent Variable Analysis and Signal Separation, 2012, p. 486‑493.

[30]     Curran P. J. A moderated nonlinear factor model for the development of commensurate measures in integrative data analysis. Multivariate Behavioral Research, Vol. 49, Issue 3, 2014, p. 502‑503.

[31]     Honkela H. L. A. Bayesian nonlinear independent component analysis by multi-layer perceptrons. Advances in Independent Component Analysis, Springer, 2000, p. 93‑121.

[32]     Liu H. T., Chang C. Q., Luk K. D. K., Hu Y. Comparison of blind source separation methods in fast somatosensory‑evoked potential detection. Journal of Clinical Neurophysiology. Vol. 28, Issue 2, 2011, p. 170‑177.

[33]     Farina D., Fevotte C., Doncarli C., Merletti R. Blind separation of linear instantaneous mixtures of nonstationary surface myoelectric signals. IEEE Transactions on Biomedical Engineering, Vol. 51, Issue 9, 2004, p. 1555‑1567.

Cite this article

Cheng Wei, Gao Lin, Zhang Jie, Lu Jiantao Nonlinear factor analysis and its application to acoustical source separation and identification. Journal of Vibroengineering, Vol. 18, Issue 5, 2016, p. 3397‑3411.

 

© JVE International Ltd. Journal of Vibroengineering. Aug 2016, Vol. 18, Issue 5. ISSN 1392-8716