2113. Time-frequency techniques for modal parameters identification of civil structures from acquired dynamic signals

Carlos Andres Perez-Ramirez1, Juan Pablo Amezquita-Sanchez2, Hojjat Adeli3,
Martin Valtierra-Rodriguez4, Rene de Jesus Romero-Troncoso5,
Aurelio Dominguez-Gonzalez6, Roque Alfredo Osornio-Rios7

1, 2, 4, 6, 7Faculty of Engineering, Autonomous University of Queretaro, Campus San Juan del Rio,
Rio Moctezuma 249, Col. San Cayetano, 76807 San Juan del Rio, Queretaro, Mexico

3Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University,
470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43220, USA

5CA Telemática, DICIS, University of Guanajuato, Carr. Salamanca-Valle de Santiago Km. 3.5 + 1.8 Km.,
36885, Salamanca, Mexico

3Corresponding author

E-mail: 1cperez@hspdigital.org, 2jamezquita@hspdigital.org, 3adeli.1@osu.edu, 4mvaltierra@hspdigital.org, 5troncoso@hspdigital.org, 6auredgz@uaq.mx, 7raosornio@hspdigital.org

Received 18 February 2016; received in revised form 10 May 2016; accepted 30 May 2016

DOI https://doi.org/10.21595/jve.2016.17220

Abstract. A major trust of modal parameters identification (MPI) research in recent years has been based on using artificial and natural vibrations sources because vibration measurements can reflect the true dynamic behavior of a structure while analytical prediction methods, such as finite element models, are less accurate due to the numerous structural idealizations and uncertainties involved in the simulations. This paper presents a state-of-the-art review of the time‑frequency techniques for modal parameters identification of civil structures from acquired dynamic signals as well as the factors that affect the estimation accuracy. Further, the latest signal processing techniques proposed since 2012 are also reviewed. These algorithms are worth being researched for MPI of large real-life structures because they provide good time-frequency resolution and noise‑immunity.

Keywords: modal parameters identification, time-frequency algorithms, wavelet transform, synchrosqueezing transform, civil structures, dynamic excitation sources.

References

[1]        Amezquita-Sanchez J. P., Adeli H. Signal processing techniques for vibration-based health monitoring of smart structures. Archives of Computational Methods in Engineering, Vol. 23, Issue 1, 2016, p. 1‑15.

[2]        Sirca G. F. Jr., Adeli H. System identification in structural engineering. Scientia Iranica – Transaction A: Civil Engineering, Vol. 19, Issue 6, 2012, p. 1355‑1364.

[3]        Garcia-Perez A., Amezquita-Sanchez J. P., Dominguez-Gonzalez A., Sedaghati R., Osornio‑Rios R., Romero-Troncoso R. J. Fused empirical mode decomposition and wavelets for locating combined damage in a truss-type structure through vibration analysis. Journal of Zhejiang University SCIENCE A, Vol. 14, Issue 9, 2013, p. 615‑630.

[4]        Peeters B., Maeck J., De Roeck G. Vibration-based damage detection in civil engineering: excitation sources and temperature effects. Smart Materials and Structures, Vol. 10, Issue 3, 2001, p. 518‑527.

[5]         He X. H., Hua X., Chen Z., Huang F. EMD-based random decrement technique for modal parameter identification of an existing railway bridge. Engineering Structures, Vol. 33, Issue 4, 2011, p. 1348‑1356.

[6]        Uebayashi H., Nagano M., Hida T., Tanuma T., Yasui M., Sakai S. Evaluation of the structural damage of high-rise reinforced concrete buildings using ambient vibrations recorded before and after damage. Earthquake Engineering and Structural Dynamics, Vol. 45, 2016, p. 213‑228.

[7]        Xia Y., Chen B., Weng S., Ni Y.-Q., Xu Y.-L. Temperature effect on vibration properties of civil structures: a literature review and case studies. Journal of Civil Structural Health Monitoring, Vol. 2, Issue 1, 2012, p. 29‑46.

[8]        Lopez-Gordo M. A., Sanchez Morillo D., van Gerven M. A. J. Spreading codes enables the blind estimation of the hemodynamic response with short-events sequences. International Journal of Neural Systems, Vol. 25, Issue 1, 2015, p. 1450035.

[9]        Nandan H., Singh M. P. Effects of thermal environment on structural frequencies. Part II – A system identification model. Engineering Structures, Vol. 81, 2014, p. 491‑498.

[10]     Laory L., Trinh N. T., Smith I. F. C., Brownjohn J. M. W. Methodologies for predicting natural frequency variation of a suspension bridge. Engineering Structures, Vol. 80, 2014, p. 211‑221.

[11]     Cabessa J., Siegelmann H. T. The super-turing computational power of evolving recurrent neural networks. International Journal of Neural Systems, Vol. 24, Issue 8, 2014, p. 1450029.

[12]     Wang L., Liang P. J., Zhang P. M., Qiu Y. H. Adaptation-dependent synchronization transitions and burst generations in electrically coupled neural networks. International Journal of Neural Systems, Vol. 24, Issue 8, 2014, p. 1450033.

[13]     Castillo E., Peteiro-Barral D., Guijarro Berdinas B., Fontenla-Romero O. Distributed one-class support vector machine. International Journal of Neural Systems, Vol. 25., Issue 7, 2015, p. 1550029.

[14]     Zhang Y., Zhou W. Multifractal analysis and relevance vector machine-based automatic seizure detection in intracranial. International Journal of Neural Systems, Vol. 25, Issue 6, 2015, p. 1550020.

[15]     Chou J. S., Pham A. D. Smart artificial firefly colony-based support vector regression for enhanced forecasting in civil engineering. Computer-Aided Civil and Infrastructure Engineering, Vol. 30, Issue 9, 2015, p. 715‑732.

[16]     Donos C., Duemoelmann M., Schulze-Bonhage A. Early seizure detection algorithm based on intractable EEG and random forest classification. International Journal of Neural Systems, Vol. 25, Issue 5, 2015, p. 1550023.

[17]     Adeli, H., Jiang, X. Dynamic fuzzy wavelet neural network model for structural system identification. Journal of Structural Engineering, Vol. 132, Issue 1, 2006, p. 102‑111.

[18]     Adeli, H., Karim A. Wavelets in Intelligent Transportation Systems. John Wiley and Sons, West Sussex, United Kingdom, 2005.

[19]     Forero Mendoza L., Vellasco M., Figueiredo K. Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models. International Journal of Neural Systems, Vol. 24, Issue 8, 2014, p. 1450031.

[20]     Quiros P., Diaz A. P., Montes S. On the use of fuzzy partitions to protect data. Integrated Computer‑Aided Engineering, Vol. 21, Issue 4, 2014, p. 355‑366.

[21]     Wang N., Adeli H. Self-constructing wavelet neural network algorithm for nonlinear control of large structures. Engineering Applications of Artificial Intelligence, Vol. 41, 2015, p. 249‑258.

[22]     Agrawal A., Tan P., Nagarajaiah S., Zhang J. Benchmark structural control problem for a seismically excited highway bridge. Part I: Phase I problem definition. Structural Control and Health Monitoring, Vol. 16, 2009, p. 509‑529.

[23]     Takewaki I., Nakamura M. Temporal variation in modal properties of a base-isolated building during an earthquake. Journal of Zhejiang University – SCIENCE A, Vol. 11, Issue 1, 2010, p. 1‑8.

[24]     Gomez H. C., Ulusoy H. S., Feng M. Q. Variation of modal parameters of a highway bridge extracted from six earthquake records. Earthquake Engineering and Structural Dynamics, Vol. 42, 2013, p. 565‑579.

[25]     Adeli H., Gere J., Weaver W. Jr. Algorithms for nonlinear structural dynamics. Journal of Structural Division, Vol. 104, Issue ST2, 1978, p. 263‑280.

[26]     Maosheng G., Jing S., Lili X. Identification of model structure parameters via combination of AFMM and ARX from seismic response data. Earthquake Engineering and Engineering Vibration, Vol. 13, Issue 3, 2014, p. 411‑423.

[27]     Su W. C., Liu C. Y., Huang C. S. Identification of instantaneous modal parameter of time‑varying systems via a wavelet-based approach and its application. Computer-Aided Civil and Infrastructure Engineering, Vol. 29, Issue 4, 2014, p. 279‑298.

[28]     Saito T., Beck J. L. Bayesian model selection for ARX models and its application to structural health monitoring. Earthquake Engineering and Structural Dynamics, Vol. 39, 2010, p. 1737‑1759.

[29]     Niu Y., Fritzen C.-P., Jung H., Buethe I., Ni Y.-Q., Wang Y.-W. Online simultaneous reconstruction of wind load and structural responses – theory and application to canton tower. Computer‑Aided Civil and Infrastructure Engineering, Vol. 30, Issue 8, 2015, p. 666‑681.

[30]     Cole H. A. On-the-line analysis of random vibrations. Proceedings of the AIAA/ASME 9th Structures, Structural Dynamics and Materials Conference, Palm Springs, CA, 1968.

[31]     James G. H. I., Carne T. G., Lauffer J. P. The Natural Excitation Technique (NExT) for Modal Parameter Extraction from Operating Wind Turbines. SAND92-1666 UC-261, 1993, Sandia National Laboratories, Albuquerque, NM.

[32]     He J., Fu Z.-F. Modal Analysis. Butterworth-Heinemann, Boston, MA, 2001.

[33]     Rodrigues J., Brincker R. Application of the random decrement technique in operational modal analysis. Proceedings of the 1st International Operational Modal Analysis Conference, Copenhagen, Denmark, 2005, p. 191‑200.

[34]     Ibrahim S. R. Random decrement technique for modal identification of structures. Journal of Spacecraft and Rockets, Vol. 14, Issue 11, 1977, p. 696‑700.

[35]     Li Q. S., Zhi L.-H., Tuan A. Y., Kao C.-S., Su S.-C., Wu C.-F. Dynamic behavior of Taipei 101 Tower: field measurement and numerical analysis. Journal of Structural Engineering, Vol. 137, Issue 1, 2011, p. 143‑155.

[36]     Cury A., Cremona C., Dumoulin J. Long-term monitoring of a PSC box girder bridge: operational modal analysis, data normalization and structural modification assessment. Mechanical Systems and Signal Processing, Vol. 33, 2012, p. 13‑37.

[37]     Wang Z., Chen G. Analytical mode decomposition with Hilbert transform for modal parameter identification of buildings under ambient vibration. Engineering Structures, Vol. 59, 2013, p. 173‑184.

[38]     Ceravolo R., Abbiati G. Time domain identification of structures: comparative analysis of output‑only methods. Journal of Engineering Mechanics, Vol. 139, Issue 4, 2013, p. 537‑544.

[39]     Lin C.-S., Chiang D.-Y. A modified random decrement technique for modal identification from nonstationary ambient response data only. Journal of Mechanical Science and Technology, Vol. 26, Issue 6, 2012, p. 1687‑1696.

[40]     Ibrahim S. R., Mikulcik E. C. A method for the direct identification of vibration parameters from free response. Shock and Vibration Bulletin, Vol. 47, Issue 4, 1977, p. 183‑198.

[41]     Lin C.-S., Tseng T.-C. Response-only modal identification using random decrement algorithm with time‑varying threshold level. Journal of Mechanical Science and Technology, Vol. 28, Issue 6, 2014, p. 2099‑2109.

[42]     Caicedo J. M. Practical guidelines for the Natural Excitation Technique (NExT) and the Eigensystem Realization Algorithm (ERA) for modal identification using ambient vibration. Experimental Techniques, Vol. 35, Issue 4, 2011, p. 52‑58.

[43]     Juang J.-N., Pappa R. S. An eigensystem realization algorithm for modal parameter identification and model reduction. Journal of Guidance, Vol. 8, 1985, p. 620‑627.

[44]     Zhou L. R., Yan G. R., Ou J. P. Response surface method based on radial basis functions for modeling large-scale structures in model updating. Computer-Aided Civil and Infrastructure Engineering, Vol. 28, Issue 3, 2013, p. 210‑226.

[45]     Brownjohn J. M. W., Magalhaes F., Caetano E., Cunha A. Ambient vibration re-testing and operational modal analysis of the Humber Bridge. Engineering Structures, Vol. 32, 2010, p. 2003‑2018.

[46]     Moser P., Moaveni B. Design and deployment of a continuous monitoring system for the Dowling Hall Footbridge. Experimental Techniques, Vol. 37, 2013, p. 15‑26.

[47]     Jo H., Sim S.-H., Nagayama T., Spencer Jr. B. F. Development and application of high‑sensitivity wireless smart sensors for decentralized stochastic modal identification. Journal of Engineering Mechanics, Vol. 138, Issue 6, 2012, p. 683‑694.

[48]     Cimellaro G. P., Piantà S., De Stefano A. Output-only modal identification of Ancient L’Aquila City Hall and Civic Tower. Journal of Structural Engineering, Vol. 138, Issue 4, 2012, p. 481‑491.

[49]     Wethyavivorn B., Surit S., Apichatyakul C., Lerdsivanon N. Model verification of Thai Historic Masonry Monuments. Journal of Performance of Constructed Facilities, Vol. 30, Issue 1, 2016, p. 4014188.

[50]     Dammika A. J., Kawarai K., Yamaguchi H., Matsumoto Y., Yoshioka T. Analytical damping evaluation complementary to experimental structural health monitoring of bridges. Journal of Bridge Engineering, Vol. 20, Issue 7, 2015, p. 4014095.

[51]     Chang M., Pakzad S. N. Modified natural excitation technique for stochastic modal identification. Journal of Bridge Engineering, Vol. 139, Issue 10, 2013, p. 1753‑1762.

[52]     Van Overschee P., De Moor B. Subspace Identification for Linear Systems: Theory, Implementation, Applications. Kluwer Academic Publishers, Dordrecht, Netherlands, 1996.

[53]     Faurre P. L. Stochastic Realization Algorithms. System Identification: Advances and Case Studies, Academic Press, 1976.

[54]     Akaike H. Markovian representation of stochastic processes by canonical variables. SIAM Journal on Control, Vol. 13, Issue 1, 1975, p. 162‑173.

[55]     Van Overschee P., De Moor B. Subspace algorithms for the stochastic identification problem. Automatica, Vol. 29, Issue 3, 1993, p. 649‑660.

[56]     Peeters B., De Roeck G. Stochastic system identification for operational modal analysis: a review. Journal of Dynamic Systems, Measurement, and Control, Vol. 123, Issue 4, 2001, p. 659‑667.

[57]     Ubertini F., Gentile C., Materazzi A. L. Automated modal identification in operational conditions and its application to bridges. Engineering Structures, Vol. 46, 2013, p. 264‑278.

[58]     Bursi O. S., Kumar A., Abbiati G., Ceravolo R. Identification, model updating, and validation of a steel twin deck curved cable-stayed footbridge. Computer-Aided Civil and Infrastructure Engineering, Vol. 29, Issue 9, 2014, p. 703‑722.

[59]     Shabbir F., Omenzetter P. Particle swarm optimization with sequential niche technique for dynamic finite element model updating. Computer-Aided Civil and Infrastructure Engineering, Vol. 30, Issue 5, 2015, p. 359‑375.

[60]     Sevim B., Bayraktar A., Altunisik A. C, Atamtürktür S., Birinci F. Assessment of nonlinear seismic performance of a restored historical arch bridge using ambient vibrations. Nonlinear Dynamics, Vol. 63, Issue 4, 2011, p. 755‑770.

[61]     Hu W.-H., Caetano E., Cunha A. Structural health monitoring of a stress-ribbon footbridge. Engineering Structures, Vol. 57, 2013, p. 578‑593.

[62]     Cross E. J., Koo K. Y., Brownjohn J. M. W., Worden K. Long-term monitoring and data analysis of the Tamar Bridge. Mechanical Systems and Signal Processing, Vol. 35, 2013, p. 16‑34.

[63]     Whelan M. J., Gangone M. V., Janoyan K. D., Jha R. Operational modal analysis of a multi‑span skew bridge using real-time wireless sensor networks. Journal of Vibration and Control, Vol. 17, Issue 13, 2010, p. 1952‑1963.

[64]     Foti D., Gattulli V., Potenza F. Output-only identification and model updating by dynamic testing in unfavorable conditions of a seismically damaged building. Computer-Aided Civil and Infrastructure Engineering, Vol. 29, Issue 9, 2014, p. 659‑675.

[65]     Liu Y.-C., Loh C.-H., Ni Y.-Q. Stochastic subspace identification for output-only modal analysis: application to super high-rise tower under abnormal loading condition. Earthquake Engineering and Structural Dynamics, Vol. 42, 2013, p. 477‑498.

[66]     Boscato G., Russo S., Ceravolo R., Fragonara L. Z. Global sensitivity-based model updating for heritage structures. Computer-Aided Civil and Infrastructure Engineering, Vol. 30, Issue 8, 2015, p. 620‑635.

[67]     Li Z., Chang C. C. Tracking of structural dynamic characteristics using recursive stochastic subspace identification and instrumental variable technique. Journal of Engineering Mechanics, Vol. 138, Issue 6, 2012, p. 591‑600.

[68]     Zhang G., Tang B., Tang G. An improved stochastic subspace identification for operational modal analysis. Measurement, Vol. 45, Issue 5, 2012, p. 1246‑1256.

[69]     Hong A. L., Ubertini F., Betti R. New stochastic subspace approach for system identification and its application to long-span bridges. Journal of Engineering Mechanics, Vol. 139, Issue 6, 2013, p. 724‑736.

[70]     Reynders E., Degrauwe D., De Roeck G., Magalhães F., Caetano E. Combined experimental‑operational modal testing of footbridges. Journal of Engineering Mechanics, Vol. 136, Issue 6, 2010, p. 687‑696.

[71]     Rathinam M., Petzold L. R. A new look at proper orthogonal decomposition. SIAM Journal on Numerical Analysis, Vol. 41, Issue 5, 2003, p. 1893‑1925.

[72]     Kallinikidou E., Yun H.-B., Masri S. F., Caffrey J. P., Sheng L.-H. Application of orthogonal decomposition approaches to long-term monitoring of infrastructure systems. Journal of Engineering Mechanics, Vol. 139, Issue 6, 2013, p. 678‑690.

[73]     Wang B.-T., Cheng D.-K. Modal analysis by free vibration response only for discrete and continuous systems. Journal of Sound and Vibration, Vol. 330, Issue 16, 2011, p. 3913‑3929.

[74]     Oliveira C. S., Navarro M. Fundamental periods of vibration of RC buildings in Portugal from in‑situ experimental and numerical techniques. Bulletin of Earthquake Engineering, Vol. 8, 2010, p. 609‑642.

[75]     Hu X., Wang B., Ji H. Wireless sensor network-based structural health monitoring system for highway bridges. Computer-Aided Civil and Infrastructure Engineering, Vol. 28, Issue 3, 2013, p. 193‑209.

[76]     Valla M., Gueguen P., Augère B., Goular D., Perrault M. Remote modal study of reinforced concrete buildings using a multipath lidar vibrometer. Journal of Structural Engineering, Vol. 141, Issue 1, 2015, p. D4014005.

[77]     Brincker R., Zhang L., Andersen P. Modal identification of output-only systems using frequency domain decomposition. Smart Materials and Structures, Vol. 10, Issue 3, 2001, p. 441‑445.

[78]     Bendat J. S., Piersol A. G. Engineering Applications of Correlation and Spectral Analysis. Wiley, New York, 1993.

[79]     García-Palencia A. J., Santini-Bell E. A two-step model updating algorithm for parameter identification of linear elastic damped structures. Computer-Aided Civil and Infrastructure Engineering, Vol. 28, Issue 7, 2013, p. 509‑521.

[80]     Erdogan H., Gülal E. Ambient vibration measurements of the Bosphorus suspension bridge by total station and GPS. Experimental Techniques, Vol. 37, Issue 3, 2013, p. 16‑23.

[81]     Jacobsen N.-J., Andersen P., Brincker R. Using enhanced frequency domain decomposition as a robust technique to harmonic excitation in operational modal analysis. Proceedings of the International Conference on Noise and Vibration Engineering, September, Leuven, Belgium, 2006.

[82]     Gade S., M¸ller N. B, Herlufsen H., Konstantin-Hansen H. Frequency domain techniques for operational modal analysis. Proceedings of the 1st International Operational Modal Analysis Conference, Copenhagen, Denmark, 2005.

[83]     Altunisik A. C., Bayraktar A., Sevim B., Ates S. Ambient vibration based seismic evaluation of isolated Gülburnu Highway Bridge. Soil Dynamics and Earthquake Engineering, Vol. 31, Issue 11, 2011, p. 1496‑1510.

[84]     Magalhães F., Cunha A., Caetano E., Brincker R. Damping estimation using free decays and ambient vibration tests. Mechanical Systems and Signal Processing, Vol. 24, Issue 5, 2010, p. 1274‑1290.

[85]     Soyoz S., Taciroglu E., Orakcal K., Nigbor R., Skolnik D., Lus H., Safak E. Ambient and forced vibration testing of a reinforced concrete building before and after its seismic retrofitting. Journal of Structural Engineering, Vol. 139, 2013, p. 1741‑1752.

[86]     Cismaşiu C., Narciso A., Amarante dos Santos F. Experimental dynamic characterization and finite‑element updating of a footbridge structure. Journal of Performance of Constructed Facilities, Vol. 29, Issue 4, 2015, p. 4014116.

[87]     Wang T., Zhang L., Tamura Y. An operational modal analysis method in frequency and spatial domain. Earthquake Engineering and Engineering Vibration, Vol. 4, Issue 2, 2005, p. 295‑300.

[88]     Agneni A., Crema L. B., Coppotelli G. Output-only analysis of structures with closely spaced poles. Mechanical Systems and Signal Processing, Vol. 24, Issue 5, 2010, p. 1240‑1249.

[89]     Jiang X., Adeli H. Pseudospectra, MUSIC, and dynamic wavelet neural network for damage detection of highrise buildings. International Journal for Numerical Methods in Engineering, Vol. 71, 2007, p. 606‑629.

[90]     Schmidt R. O. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas Propagation, Vol. 34, Issue 3, 1986, p. 276‑280.

[91]     Osornio-Rios R. A., Amezquita-Sanchez J. P., Romero-Troncoso R. J., Garcia-Perez A. MUSIC‑ANN Analysis for locating structural damages in a truss-type structure by means of vibrations. Computer‑Aided Civil and Infrastructure Engineering, Vol. 27, Issue 9, 2012, p. 687‑698.

[92]     Amezquita-Sanchez J. P., Garcia-Perez A., Romero-Troncoso R. J., Osornio-Rios R. A., Herrera-Ruiz G. High-resolution spectral-analysis for identifying the natural modes of a truss-type structure by means of vibrations. Journal of Vibration and Control, Vol. 19, Issue 16, 2013, p. 2347‑2356.

[93]     Perez-Ramirez C. A., Amezquita-Sanchez J. P., Adeli H., Valtierra-Rodriguez M., Camarena‑Martinez D., Romero-Troncoso R. J. New methodology for modal parameters identification of smart civil structures using ambient vibrations and synchrosqueezed wavelet transform. Engineering Applications of Artificial Intelligence, Vol. 48, 2016, p. 1‑12.

[94]     Ghodrati Amiri G., Abdolahi Rad A., Khanmohamadi Hazaveh N. Wavelet based method for generating non-stationary artificial pulse-like near-fault ground motions. Computer-Aided Civil and Infrastructure Engineering, Vol. 29, Issue 10, 2014, p. 758‑770.

[95]     Perez G., Conci A., Moreno A. B., Hernandez-Tamames J. A. Rician noise attenuation in the wavelet packet transformed domain for brain MRI. Integrated Computer-Aided Engineering, Vol. 21, Issue 2, 2014, p. 163‑175.

[96]     Adeli H., Kim H. Wavelet-hybrid feedback-least mean square algorithm for robust control of structures. Journal of Structural Engineering, Vol. 130, Issue 1, 2004, p. 128‑137.

[97]     Kim H., Adeli H. Hybrid feedback-least mean square algorithm for structural control. Journal of Structural Engineering, Vol. 130, Issue 1, 2004, p. 120‑127.

[98]     Amini F., Zabihi-Samani M. A wavelet-based adaptive pole assignment method for structural control. Computer-Aided Civil and Infrastructure Engineering, Vol. 29, Issue 6, 2014, p. 464‑477.

[99]     Dai H., Wang W. An adaptive wavelet frame neural network method for efficient reliability analysis. Computer‑Aided Civil and Infrastructure Engineering, Vol. 29, Issue 10, 2014, p. 801‑814.

[100]  Dai H., Wang W., Zhang H. A multiwavelet neural network-based response surface method for structural reliability analysis. Computer-Aided Civil and Infrastructure Engineering, Vol. 30, Issue 2, 2015, p. 151‑162.

[101]  Katicha S. W., Flintsch G., Ferne B., Bryce J. Wavelet denoising of TSD deflection slope measurements for improved pavement structural evaluation. Computer-Aided Civil and Infrastructure Engineering, Vol. 29, Issue 6, 2014, p. 399‑415.

[102]  Adeli H., Jiang X. Intelligent Infrastructure: Neural Networks, Wavelets, and Chaos Theory for Intelligent Transportation Systems and Smart Structures. CRC Press, Boca Raton, 2009.

[103]  Vahabi Z., Amirfattahi R., Ghassemi F., Shayegh F. Online epileptic seizure prediction using wavelet-based Bi-phase correlation of electrical signal tomography. International Journal of Neural Systems, Vol. 25, Issue 6, 2015, p. 1550028.

[104]  Hsu W. Y. Assembling a multi-feature EEG classifier for left-right motor data using wavelet‑based fuzzy approximate entropy for improved accuracy. International Journal of Neural Systems, Vol. 25, Issue 8, 2015, p. 1550037.

[105]  Ortiz-Rosario A., Adeli H., Buford J. A. Wavelet methodology to improve single unit isolation in primary motor cortex cells. Journal of Neuroscience Methods, Vol. 246, 2015, p. 106‑118.

[106]  Ülker-Kaustell M., Karoumi R. Application of the continuous wavelet transform on the free vibrations of a steel‑concrete composite railway bridge. Engineering Structures, Vol. 33, Issue 3, 2011, p. 911‑919.

[107]  Le T.-P., Paultrec P. Modal identification based on continuous wavelet transform and ambient excitation tests. Journal of Sound and Vibration, Vol. 331, Issue 9, 2012, p. 2023‑2037.

[108]  Kim Y. S., Chen L.-Q. Separation of closely spaced modes by combining complex envelope displacement analysis with method of generating intrinsic mode functions through filtering algorithm based on wavelet packet decomposition. Applied Mathematics and Mechanics, Vol. 34, Issue 7, 2013, p. 801‑810.

[109]   Holschneider M., Kronland-Martinet R., Morlet J., Tchamitchian P. A real-time algorithm for signal analysis with the help of the wavelet transform. Wavelets, Springer Berlin Heidelberg, 1989, p. 286‑297.

[110]  Pesquet J.-C., Krim H., Carfantan H. Time-invariant orthonormal wavelet representations. IEEE Transactions on Signal Processing, Vol. 44, Issue 8, 1996, p. 1964‑1970.

[111]  Sadhu A., Hazra B., Narasimhan S. Decentralized modal identification of structures using parallel factor decomposition and sparse blind source separation. Mechanical Systems and Signal Processing, Vol. 41, Issues 1‑2, 2013, p. 396‑419.

[112]  Su W. C., Huang C. S., Chen C. H., Liu C. Y., Huang H. C., Le Q. T. Identifying the modal parameters of a structure from ambient vibration data via the stationary wavelet packet. ComputerAided Civil and Infrastructure Engineering, Vol. 29, Issue 10, 2014, p. 738‑757.

[113]  Daubechies I., Lu J., Wu H. T. Synchrosqueezed wavelet transforms: An empirical mode decomposition‑like tool. Applied and Computational Harmonic Analysis, Vol. 30, Issue 2, 2011, p. 243‑261.

[114]  Huang N. E., Shen Z., Long S. R., Wu M. C., Shih H. H., Zheng Q., Yen N.-C., Tung C. C., Liu H. M. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non‑stationary time series analysis. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 454, Issue 1971, 1998, p. 903‑995.

[115]  Yan B., Miyamoto A. A comparative study of modal parameter identification based on wavelet and Hilbert‑Huang transforms. Computer-Aided Civil and Infrastructure Engineering, Vol. 21, Issue 1, 2006, p. 9‑23.

[116]  Zhao Z., Wang Y. Analysis of diastolic murmurs for coronary artery disease-based on Hilbert Huang transform. IEEE International Conference on Machine Learning and Cybernetics, Hong Kong, China, Vol. 6, 2007, p. 3337‑3342.

[117]  Antonino-Daviu J. A., Riera-Guasp M., Pineda-Sanchez M., Perez R. B. A critical comparison between DWT and Hilbert‑Huang‑based methods for the diagnosis of rotor bar failures in induction machines. IEEE Transaction on Industrial Applications, Vol. 45, Issue 5, 2009, p. 1794‑1803.

[118]  Chen C. H., Wang C. H., Lui J. Y., Lui C., Liang W. T., Yen H. Y., Yeh Y. H., Chia Y. P., Wang Y. Identification of earthquakes signals from groundwater level records using the HHT method. Geophysical Journal International, Vol. 180, 2010, p. 1231‑1241.

[119]  Shi W., Shan J., Lu X. Modal identification of Shanghai World Financial Center both from free and ambient vibration response. Engineering Structures, Vol. 34, 2012, p. 14‑26.

[120]  Ditommaso R., Mucciarelli M., Parolai S., Picozzi M. Monitoring the structural dynamic response of a Masonry Tower: comparing classical and time-frequency analyses. Bulletin of Earthquake Engineering, Vol. 10, Issue 4, 2012, p. 1221‑1235.

[121]  Wu Z., Huang N. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, Vol. 1, Issue 1, 2009, p. 1‑41.

[122]  Pai P. F., Nguyen B.-A., Sundaresan M. H. Nonlinearity identification by time-domain-only signal processing. International Journal of Non‑Linear Mechanics, Vol. 54, 2013, p. 85‑98.

[123]  Luengo D., Monzon S., Triganoz T., Via J., Artes-Rodrıguez A. Blind analysis of atrial fibrillation electrograms: a sparsity-aware formulation. Integrated Computer-Aided Engineering, Vol. 22, Issue 1, 2015, p. 71‑85.

[124]  Hyvarinen A., Karhunen J., Oja E. Independent Component Analysis. John Wiley, New York, 2001.

[125]   Belouchrani A., Abed-Meraim K., Cardoso J. Moulines E. A blind source separation technique using second‑order statistics. IEEE Transactions on Signal Processing, Vol. 45, Issue 2, 1997, p. 434‑444.

[126]   Poncelet F., Kerschen G., Golinval J.-C., Verhelstb D. Output-only modal analysis using blind source separation techniques. Mechanical Systems and Signal Processing, Vol. 21, Issue 6, 2007, p. 2335‑2358.

[127]  Hazra B., Sadhu A., Roffel A. J., Narasimhan S. Hybrid time-frequency blind source separation towards ambient system identification of structures. Journal of Engineering Mechanics, Vol. 27, Issue 5, 2012, p. 314‑332.

[128]  Yang K., Yu K., Li Q. Modal parameter extraction based on Hilbert transform and complex independent component analysis with reference. Mechanical Systems and Signal Processing, Vol. 40, 2013, p. 257‑268.

[129]  Cara F. J., Carpio J., Juan J., Alarcón E. An approach to operational modal analysis using the expectation maximization algorithm. Mechanical Systems and Signal Processing, Vol. 31, 2012, p. 109‑129.

[130]  Cheung S. H., Beck J. L. Calculation of posterior probabilities for Bayesian model class assessment and averaging from posterior samples based on dynamic system data. Computer-Aided Civil and Infrastructure Engineering, Vol. 25, Issue 5, 2010, p. 304‑321.

[131]  Au S. K. Fast Bayesian FFT method for ambient modal identification with separated modes. Journal of Engineering Mechanics, Vol. 137, Issue 3, 2011, p. 214‑226.

[132]  Yan W.-J., Katafygiotis L. S. A two-stage fast Bayesian spectral density approach for ambient modal analysis. Part I: posterior most probable value and uncertainty. Mechanical Systems and Signal Processing, Vol. 54, Issue 55, 2015, p. 39‑55.

[133]  Zheng J., Cheng J., Yang Y. A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy. Mechanism and Machine Theory, Vol. 70, 2013, p. 441‑453.

[134]  Chu P. C., Fan C., Huang N. E. Compact Empirical mode decomposition: an algorithm to reduce mode mixing, end effect, and detrend uncertainty. Advances in Adaptive Data Analysis, Vol. 4, Issue 3, 2012, p. 1250017.

[135]  Amezquita-Sanchez J. P., Adeli H. A new music-empirical wavelet transform methodology for time‑frequency analysis of noisy nonlinear and non-stationary signals. Digital Signal Processing, Vol. 45, 2014, p. 55‑68.

[136]  Chui C. K., Mhaskar H. N. Signal decomposition and analysis via extraction of frequencies. Applied and Computational Harmonic Analysis, Vol. 40, Issue 1, 2016, p. 97‑136.

Cite this article

Perez‑Ramirez Carlos Andres, Amezquita‑Sanchez Juan Pablo, Adeli Hojjat, Valtierra‑Rodriguez Martin, Romero‑Troncoso Rene de Jesus, Dominguez‑Gonzalez Aurelio, Osornio‑Rios Roque Alfredo Time‑frequency techniques for modal parameters identification of civil structures from acquired dynamic signals. Journal of Vibroengineering, Vol. 18, Issue 5, 2016, p. 3164‑3185.

 

© JVE International Ltd. Journal of Vibroengineering. Aug 2016, Vol. 18, Issue 5. ISSN 1392-8716