2093. A wavelet thresholding method for vibration signals denoising of high-piled wharf structure based on a modified artificial bee colony algorithm

Xun Zhang1, Juelong Li2, Jianchun Xing3, Ping Wang4, Liqiang Xie5

1, 2, 3, 4, 5College of Defense Engineering, PLA University of Science and Technology,
Nanjing 210007, China

2Research Center of Coastal Defense Engineering, Beijing 100841, China

2Corresponding author

E-mail: 1xunzhang893@163.com, 2lijuelong@126.com, 3xjc@893.com.cn, 4wp893@sina.com, 5xielq@outlook.com

Received 23 March 2016; received in revised form 26 June 2016; accepted 30 June 2016

DOI https://doi.org/10.21595/jve.2016.17005

Abstract. Vibration monitoring signals are widely used for damage alarming among the structural health monitoring system. However, these signals are easily corrupted by the environmental noise in the collecting that hampers the accuracy and reliability of measured results. In this paper, a modified artificial bee colony (MABC) algorithm-based wavelet thresholding method has been proposed for noise reduction in the real measured vibration signals. Kent chaotic map and general opposition-based learning strategies are firstly adopted to initialize the colony. Tournament selection mechanism is then employed to choose the food source. Finally, the Kent chaotic search is applied to exploit the global optimum solution according to the current optimal value. Moreover, a generalized cross validation (GCV) based fitness function is constructed without requiring foreknowledge of the noise-free signals. A physical model experiment for a high‑piled wharf structure is implemented to verify the feasibility of the proposed signal denoising approach. Particle swarm optimization (PSO) algorithm, basic artificial bee colony (BABC) algorithm and Logistic chaos artificial bee colony (LABC) algorithm and are also taken as contrast tests. Comparison results demonstrate that the proposed algorithm outperforms the other algorithms in terms of convergence speed and precision, and can effectively reduce the noise from the measured vibration signals of the high-piled wharf structure.

Keywords: high-piled wharf, vibration signal, wavelet thresholding denoising, artificial bee colony algorithm.

References

[1]        Yi T. H., Li H. N., Zhao X. Y. Noise smoothing for structural vibration test signals using an improved wavelet thresholding technique. Sensors, Vol. 12, Issue 8, 2012, p. 11205‑11220.

[2]        Gonzalez R. C., Woods R. E. Digital Image Processing. 2nd Ed. Pearson Prentice-Hall, Singapore, 2002.

[3]        Lee H., Lee J., Jung W., Lee G. The periodic moving average filter for removing motion artifacts from PPG signals. International Journal of Control, Automation, and Systems, Vol. 5, Issue 6, 2007, p. 701‑706.

[4]        Jwo D. J., Cho T. S. Critical remarks on the linearised and extended Kalman filters with geodetic navigation examples. Measurement, Vol. 43, Issue 9, 2010, p. 1077‑1089.

[5]        Souden M., Benesty J., Affes S. On the global output SNR of the parameterized frequency-domain multichannel noise reduction Wiener filter. Signal Processing Letters, Vol. 17, Issue 5, 2010, p. 425‑428.

[6]        Soon Y., Koh S. N. Speech enhancement using 2-D Fourier transform. IEEE Transactions on Speech and Audio Processing, Vol. 11, Issue 6, 2003, p. 717‑724.

[7]        Giurgiutiu V., Yu L. Comparison of short-time fourier transform and wavelet transform of transient and tone burst wave propagation signals for structural health monitoring. Proceedings of 4th International Workshop on Structural Health Monitoring, Stanford, USA, 2003, p. 1267‑1274.

[8]        Donoho D. L., Johnstone I. M. Ideal spatial adaptation by wavelet shrinkage. Biometrika, Vol. 81, Issue 3, 1994, p. 425‑455.

[9]        Donoho D. L., Johnstone I. M. Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, Vol. 90, Issue 432, 1995, p. 1200‑1224.

[10]     Jansen M. Minimum risk thresholds for data with heavy noise. IEEE Signal Processing Letters, Vol. 13, Issue 5, 2006, p. 296‑299.

[11]     Zhang B., Sun L., Yu H., Xin Y., Cong Z. Wavelet denoising method for laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, Vol. 28, Issue 12, 2013, p. 1884‑1893.

[12]     Devi P. N., Asokan R. An improved adaptive wavelet shrinkage for ultrasound despeckling. Sadhana, Vol. 39, Issue 4, 2014, p. 971‑988.

[13]      Meng B., Li Z., Wang H., Li Q. An improved wavelet adaptive logarithmic threshold denoising method for analysing pressure signals in a transonic compressor. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 229, Issue 11, 2015, p. 2023‑2030.

[14]     Bhutada G. G., Anand R. S., Saxena S. C. PSO-based learning of sub-band adaptive thresholding function for image denoising. Signal, Image and Video Processing, Vol. 6, 2012, p. 1‑7.

[15]     Bhandari A. K., Soni V., Kumar A., Singh G. K. Artificial bee colony-based satellite image contrast and brightness enhancement technique using DWT-SVD. International Journal of Remote Sensing, Vol. 35, Issue 5, 2014, p. 1601‑1624.

[16]     Soni V., Bhandari A. K., Kumar A., Singh G. K. Improved sub-band adaptive thresholding function for denoising of satellite image based on evolutionary algorithms. IET Signal Processing, Vol. 7, Issue 8, 2013, p. 720‑730.

[17]     Pesquet J. C., Krim H., Carfantan H. Time-invariant orthonormal wavelet representations. IEEE Transactions on Signal Processing, Vol. 44, Issue 8, 1996, p. 1964‑1970.

[18]     Zhong S., Oyadiji S. O. Crack detection in simply supported beams using stationary wavelet transform of modal data. Structural Control and Health Monitoring, Vol. 18, Issue 2, 2011, p. 169‑190.

[19]     Mallat S. Theory for multi-resolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, Issue 7, 1989, p. 674‑693.

[20]     Jansen M., Malfait M., Bultheel A. Generalized cross validation for wavelet thresholding. Signal Processing, Vol. 56, Issue 1, 1997, p. 33‑44.

[21]     Weyrich N., Warhola G. T. Wavelet shrinkage and generalized cross validation for image denoising. IEEE Transactions on Image Processing, Vol. 7, Issue 1, 1998, p. 82‑90.

[22]     Wahba G. Spline models for observational data. Philadelphia, PA, SIAM, 1990.

[23]     Karaboga D. An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report tr06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.

[24]     Karaboga D., Basturk B. On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, Vol. 8, Issue 1, 2008, p. 687‑697.

[25]     Xu C., Duan H., Liu F. Chaotic artificial bee colony approach to uninhabited combat air vehicle (UCAV) path planning. Aerospace Science and Technology, Vol. 14, Issue 8, 2010, p. 535‑541.

[26]     Xiang W. L., An M. Q. An efficient and robust artificial bee colony algorithm for numerical optimization. Computers and Operations Research, Vol. 40, Issue 5, 2013, p. 1256‑1265.

[27]     Tizhoosh H. R. Opposition-based learning: a new scheme for machine intelligence. Proceedings of International Conference on Computational Intelligence for Modeling, Control and Automation, Vienna, Austria, 2005, p. 695‑701.

[28]      Wang H., Wu Z., Rahnamayan S., Liu Y., Ventresca M. Enhancing particle swarm optimization using generalized opposition-based learning. Information Sciences, Vol. 181, Issue 20, 2011, p. 4699‑4714.

[29]     Wang H., Wu Z., Rahnamayan S. Enhanced opposition-based differential evolution for solving high‑dimensional continuous optimization problems. Soft Computing, Vol. 15, Issue 11, 2011, p. 2127‑2140.

[30]     El-Abd M. Generalized opposition-based artificial bee colony algorithm. IEEE Congress on Evolutionary Computation, Brisbane, Queensland, 2012, p. 1‑4.

[31]     Wang H., Rahnamayan S., Wu Z. Parallel differential evolution with self-adapting control parameters and generalized opposition-based learning for solving high-dimensional optimization problems. Journal of Parallel and Distributed Computing, Vol. 73, Issue 1, 2013, p. 62‑73.

[32]     Bao L., Zeng J. Comparison and analysis of the selection mechanism in the artificial bee colony algorithm. Proceedings of 9th International Conference on Hybrid Intelligent Systems, Shenyang, China, Vol. 1, 2009, p. 411‑416.

[33]     Sun X. P., Wang Y. Z., Zhao B. H. Modal experiment of physical model for high-piled wharf under ambient excitation. Journal of Vibration, Measurement and Diagnosis, Vol. 33, Issue 2, 2013, p. 263‑268, (in Chinese).

Cite this article

Zhang Xun, Li Juelong, Xing Jianchun, Wang Ping, Xie Liqiang A wavelet thresholding method for vibration signals denoising of high‑piled wharf structure based on a modified artificial bee colony algorithm. Journal of Vibroengineering, Vol. 18, Issue 5, 2016, p. 2899‑2915.

 

JVE International Ltd. Journal of Vibroengineering. Aug 2016, Vol. 18, Issue 5. ISSN 1392-8716