2132. Study on a fractional-order controllers based on best rational approximation of fractional calculus operators

Huimin Zhao1, Wu Deng2, Xinhua Yang3, Yu Xue4

1, 2, 3Software Institute, Dalian Jiaotong University, Dalian 116028, China

1, 2The State Key Laboratory of Mechanical Transmissions, Chongqing University,
Chongqing 400044, China

1, 2Traction Power State Key Laboratory of Southwest Jiaotong University, Chengdu 610031, China

1, 2, 3Dalian Key Laboratory of Welded Structures and Its Intelligent Manufacturing Technology(IMT) of Rail Transportation Equipment, Dalian Jiaotong University, Dalian 116028, China

4Nanjing University of Information Science and Technology, Nanjing, 210044, China

2Corresponding author

E-mail: 1hm_zhao1977@126.com, 2dw7689@163.com, 312634293@qq.com, 4fukaifang@yeah.net

Received 12 March 2016; received in revised form 16 June 2016; accepted 14 July 2016

DOI https://doi.org/10.21595/jve.2016.16966

Abstract. This paper presents a rational approximation method for fractional calculus operators in the given frequency range and the error, which is based on the best rational approximation definition. The fractional integral operator is selected as an example to describe the construction of the rational approximation functions. An application case () is used to illustrate the effectiveness of the proposed method. The obtained approximation function in the frequency domain is a best rational approximation function, which can further improve the accuracy of the approximation without increasing the orders. On the basis of the presented rational approximation method, a rational approximation equation of a fractional-order PID controller is obtained. Finally, the method for analyzing the optimization and frequency characteristics of the fractional‑order controller is implemented to demonstrate the good frequency characteristic and best structure. The results from theoretical analysis and experimental verification show that the proposed method provides a new design idea for the effective application of the fractional-order PID controller in engineering.

Keywords: best rational approximation definition, fractional calculus operators, fractional‑order PID controller, model optimization.


[1]        Machado J. T., Kiryakova V. M. Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation, Vol. 16, Issue 3, 2011, p. 1140‑1153.

[2]        Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus and Applied Analysis, Vol. 5, Issue 4, 2002, p. 367‑386.

[3]        Gu B., Sheng V. S., Keng Y. T., Romano W., Li S. Incremental support vector learning for ordinal regression. IEEE Transactions on Neural Networks and Learning Systems, Vol. 26, Issue 7, 2015, p. 1403‑1416.

[4]        Machado J. T. Fractional derivatives: probability interpretation and frequency response of rational approximations. Communications in Nonlinear Science and Numerical Simulation, Vol. 14, Issue 7, 2009, p. 3492‑3497.

[5]        Fu Z. J., Sun X. M., Liu Q., Zhou L., Shu J. G. Achieving efficient cloud search services: multi‑keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Transactions on Communications, Vol. E98-B, Issue 1, 2015, p. 190‑200.

[6]        Gu B., Sun X. M., Sheng V. S. Structural minimax probability machine. IEEE Transactions on Neural Networks and Learning Systems, 2016.

[7]        Achar B. N., Hanneken J. W., Clarke T. Damping characteristics of fractional oscillator. Physica A, Vol. 339, 2004, p. 311‑319.

[8]        Xia Z. H., Wang X. H., Sun X. M., Liu Q. S., Xiong N. X. Steganalysis of LSB matching using differences between nonadjacent pixels. Multimedia Tools and Applications, Vol. 75, Issue 4, 2016, p. 1947‑1962.

[9]        Mozyrska D., Torres D. F. M. Modified optimal energy and initial memory of fractional continuous‑time linear systems. Signal Processing, Vol. 91, Issue 3, 2011, p. 379‑385.

[10]     Stojanovic M. Foundation of the fractional calculus in generalized function algebras. Journal of Applied Analysis, Vol. 10, Issue 4, 2012, p. 439‑467.

[11]     Gu B., Sheng V. S., Wang Z. J., Derek H., Osman S., Li S. Incremental learning for ν-Support Vector Regression. Neural Networks, Vol. 67, 2015, p. 140‑150.

[12]     Zheng Y. H., Jeon B., Xu D. H., Wu J. Q. M., Zhang H. Image segmentation by generalized hierarchical fuzzy C-means algorithm. Journal of Intelligent and Fuzzy Systems, Vol. 28, Issue 2, 2015, p. 961‑973.

[13]     Wen S. F., Shen Y. J., Li X. D., Yang S. P., Xing H. J. Dynamical analysis of fractional‑order Mathieu equation. Journal of Vibroengineering, Vol. 17, Issue 5, 2015, p. 2696‑2709.

[14]     Ma T. H., Zhou J. J., Tang M. L., Tian Y., Al Dhelaan A., Al Rodhaan M., Lee S. Y. Social network and tag sources based augmenting collaborative recommender system. IEICE transactions on Information and Systems, Vol. E98-D, Issue 4, 2015, p. 902‑910.

[15]     Wen X. Z., Shao L., Xue Y., Fang W. A rapid learning algorithm for vehicle classification. Information Sciences, Vol. 295, Issue 1, 2015, p. 395‑406.

[16]     Li W., Hori Y. Vibration suppression using single neuron-based PI fuzzy controller and fractional‑order disturbance observer. IEEE Transactions on Industrial Electronics, Vol. 54, Issue 1, 2007, p. 117‑126.

[17]     Podlubny I. Fractional-order systems and PIλDľ controllers. IEEE Transactions on Automatic Control, Vol. 44, Issue 1, 1999, p. 208‑214.

[18]     Tseng C. C. Design of fractional-order digital FIR differentiators. IEEE Signal Processing Letter, Vol. 8, Issue 3, 2001, p. 77‑79.

[19]     Chen Y. Q., Kevin L. M. Discretization schemes for fractional-order differentiators and integrators. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49, Issue 3, 2002, p. 363‑367.

[20]     Chen Y. Q., Vinagre B. M. A new IIR-type digital fractional-order differentiator. Signal Processing, Vol. 83, Issue 11, 2003, p. 2359‑2365.

[21]     Podlubny I., Petras I., Vinagre B. M., O’Leary P., Dorcak L. Analogue realization of fractional‑order controllers. Nonlinear Dynamics, Vol. 29, Issue 1, 2002, p. 281‑296.

[22]     Krishna B. T. Studies on fractional-order differentiators and integrators: a survey. Signal Processing, Vol. 91, 2011, p. 386‑426.

[23]     Oustaloup A., Levron F., Nanot F., Mathieu B. Frequency band complex non-integer differentiator: characterization and synthesis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 47, Issue 1, 2000, p. 25‑40.

[24]     Charef A. Design of analog variable fractional-order differentiator. Nonlinear Dynamics, Vol. 69, Issue 4, 2012, p. 1577‑1588.

[25]     Romero M., deMadrid A. P., Manoso C., Vinagre B. M. IIR approximations to the fractional differentiator/integrator using Chebyshev polynomials theory. ISA Transactions, Vol. 52, 2013, p. 461‑468.

[26]     Chafia M., Youcef F. Using new hybrid integrators to design IIR fractional-order integrators via impulse invariance method. Circuits, Systems, and Signal Processing, Vol. 33, 2014, p. 643‑653.

[27]     Tseng C. C., Lee S. L. Design of digital Feller fractional-order integrator. Signal Processing, Vol. 83, Issue 102, 2014, p. 16‑31.

[28]     Benkhettou N., Brito da Cruz A. M. C., Torres D. F. M. A fractional calculus on arbitrary time scales: fractional differentiation and fractional integration. Signal Processing, Vol. 107, 2015, p. 230‑237.

Cite this article

Zhao Huimin, Deng Wu, Yang Xinhua, Xue Yu Study on a fractional‑order controllers based on best rational approximation of fractional calculus operators. Journal of Vibroengineering, Vol. 18, Issue 5, 2016, p. 3412‑3424.


Š JVE International Ltd. Journal of Vibroengineering. Aug 2016, Vol. 18, Issue 5. ISSN 1392-8716