124. Detection of the surface defects in thin polymeric films using projection moiré

V. Miliūnas1, A. Voloshin2, E. Kibirkštis3, A. Stepanenko4, N. Buškuvienė5, L. Ragulskis6

1, 3, 5Kaunas University of Technology, Department of Manufacturing Engineering,
Studentų 56, 51424, Kaunas, Lithuania

2Lehigh University, Department of Mechanical Engineering and Mechanics, Bethlehem, PA 18015, USA

4Belarusian National Technical University, Department of Organization of Packaging Production, Nezavisimosty Ave., 65, 220013, Minsk, Republic of Belarus

6Vytautas Magnus University, 44404, Kaunas, Lithuania

3Corresponding author

E-mail: 1valdas.miliunas@ktu.lt, 2av01@lehigh.edu, 3edmundas.kibirkstis@ktu.lt, 4annastepanenko@mail.ru, 5nijole.buskuviene@ktu.lt, 6l.ragulskis@if.vdu.lt

Received 2 June 2017; received in revised form 19 June 2017; accepted 30 June 2017

DOI https://doi.org/10.21595/jme.2017.18817


Abstract. Experimental investigations of the polymeric films HDPE and PP and of the multi‑layered material PET+LDPE with defects (puckered surfaces, holes and segregation of the upper layer) were performed. For this purpose, the method of projection moiré was used. In the process of investigations, the images of the defects were determined. During the experimental investigations it was determined that the images and shapes of the eigenmodes, as well as the frequencies and amplitudes of vibrations change due to mechanical or structural defects in the polymeric films and because of symmetrical or un-symmetrical loading. Typical optical images for various types of defects were determined. In the paper smoothness of fringes by using the method of time averaged geometric moiré is also investigated. On the basis of a one dimensional model graphical relationships for linear variation with respect to longitudinal coordinate of amplitude of vibrations are obtained. They provide the background for the choice of the required number of images in a period of oscillations for different smoothnesses of moiré fringes.

Keywords: projection moiré, polymeric film, eigenmodes, surface defects, types of defects, typical images, vibrations, time averaged moiré, geometric moiré, smoothness of fringes.


[1]        Gamage P., Xie S. Q. A real-time vision system for defect inspection in cast extrusion manufacturing process. International Journal of Advanced Manufacturing Technology, Vol. 40, 2009, p. 144‑156.

[2]        Prakash O. Defects in multilayer plastic films I: interface defects in extrusion. Computers and Material Science, Vol. 37, 2006, p. 7‑11.

[3]        Prakash O., Moitra A. Defects in multilayer plastic films II: streak formation in extruded films. Computers and Material Science, Vol. 37, 2006, p. 12‑14.

[4]        Barlow C. Y., Morgan D. C. Polymer film packaging for food: an environmental assessment. Resource Conservation and Recycling, Vol. 78, 2013, p. 74‑80.

[5]        Tartakowski Z. Recycling of packaging multilayer films: new materials for technical products. Resource Conservation and Recycling, Vol. 55, 2010, p. 167‑170.

[6]        Dong S., He B., Lin C., et al. Calibration method for a structured light measurement system with two different focal length cameras. Measurement, Vol. 73, 2015, p. 462‑472.

[7]        Luo H., Xu H., Binh N. H., et al. A simple calibration procedure for structured light system. Optics and Lasers in Engineering, Vol. 57, 2014, p. 6‑12.

[8]        Ragulskis M., Maskeliūnas R., Saunorienė L. Identification of in-plane vibrations using time average stochastic moire. Experimental Techniques, Vol. 29, 2005, p. 41‑45.

[9]        Mironova T. V., Sultanov T. T., Zubov V. A. Digital photography in measurements of shifts of object surfaces with formation of the speckle structure in white light. Journal of Russian Laser Research, Vol. 25, 2004, p. 495‑510.

[10]     Scharstein D., Szeliski R. High-accuracy stereo depth maps using structured light. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Vol. 1, 2003, p. 195‑202.

[11]     Han L., Voloshin A., Emri I. Study of the multilayer PCB CTEs by moiré interferometry. Optics and Lasers in Engineering, Vol. 42, 2004, p. 613‑626.

[12]     Malamas E. N., Petrakis E. G. M., Zervakis M., et al. A survey on industrial vision systems, applications and tools. Image and Vision Computations, Vol. 21, 2003, p. 171‑188.

[13]     Ragulskis M., Maskeliūnas R., Ragulskis L., Turla V. Investigation of dynamic displacements of lithographic press rubber roller by time average geometric moire. Optics and Lasers in Engineering, Vol. 43, 2005, p. 951‑962.

[14]     Ragulskis K., Maskeliūnas R., Zubavičius L. Analysis of structural vibrations using time averaged shadow moire. Journal of Vibroengineering, Vol. 8, Issue 3, 2006, p. 26‑29.

[15]     Saunorienė L., Ragulskis M. Time-Averaged Moire Fringes. Lambert Academic Publishing, 2010.

[16]     Huimin X., Guotao W., Fulong D., Guangjun Z., Xingfu L., Fangju Z., Aiming X. The dynamic deformation measurement of the high speed heated LY12 aluminium plate with moire interferometry. Journal of Materials Processing Technology, Vol. 83, Issues 1‑3, 1998, p. 159‑163.

[17]     Deason V. A., Epstein J. S., Abdallah A. Dynamic diffraction moire: theory and applications. Optics and Lasers in Engineering, Vol. 12, Issues 2‑3, 1990, p. 173‑187.

[18]     Kokaly M. T., Lee J., Kobayashi A. S. Moire interferometry for dynamic fracture study. Optics and Lasers in Engineering, Vol. 40, Issue 4, 2003, p. 231‑247.

[19]     Timoshenko S. P., Goodier J. N. Theory of Elasticity. Nauka, Moscow, 1975, (in Russian).

[20]     Soifer V. A. Computer processing of images. Herald of the Russian Academy of Sciences, Vol. 71, Issue 2, 2001, p. 119‑129, (in Russian).

[21]     Vest C. Holographic Interferometry. Mir, Moscow, 1982, (in Russian).

[22]     Han B., Post D., Ifju P. Moire interferometry for engineering mechanics: current practices and future developments. Journal of Strain Analysis for Engineering Design, Vol. 36, Issue 1, 2001, p. 101‑117.

[23]     Field J. E., Walley S. M., Proud W. G., Goldrein H. T., Siviour C. R. Review of experimental techniques for high rate deformation and shock studies. International Journal of Impact Engineering, Vol. 30, Issue 7, 2004, p. 725‑775.

[24]     Dai F. L., Wang Z. Y. Geometric micron moire. Optics and Lasers in Engineering, Vol. 31, Issue 3, 1999, p. 191‑198.

[25]     Liang C. Y., Hung Y. Y., Durelli A. J., Hovanesian J. D. Time-averaged moire method for in-plane vibration analysis. Journal of Sound and Vibration, Vol. 62, Issue 2, 1979, p. 267-275.

Cite this article

Miliūnas V., Voloshin A., Kibirkštis E., Stepanenko A., Buškuvienė N., Ragulskis L. Detection of the surface defects in thin polymeric films using projection moiré. Journal of Measurements in Engineering, Vol. 5, Issue 2, 2017, p. 106‑114.


Journal of Measurements in Engineering. June 2017, Volume 5, Issue 2

© JVE International Ltd. ISSN Print 2335-2124, ISSN Online 2424-4635, Kaunas, Lithuania