87. Analysis of the chassis design for a high mobility wheel platform

Grzegorz Szczęśniak1, Paulina Nogowczyk2, Rafał Burdzik3, Łukasz Konieczny4

1, 2SZCZĘŚNIAK Pojazdy Specjalne Sp. z. o.o., Bestwińska Street 105A, 43-346 Bielsko-Biała, Poland

3, 4Faculty of Transport Silesian University of Technology, Krasińskiego Street 8, 40-019 Katowice, Poland

3Corresponding author

E-mail: 1gszczesniak@psszczesniak.pl, 2pnogowczyk@psszczesniak.pl, 3rafal.burdzik@polsl.pl, 4lukasz.konieczny@polsl.pl

(Received 6 April 2016; accepted 16 June 2016)

Abstract. This paper provides an analysis of a solution proposed for the design of the chassis of a special-purpose vehicle’s mobile platform using an example of the high mobility wheel platform (KPWM) manufactured by the company Szczęśniak Pojazdy Specjalne. The basic requirements pertaining to vehicle chassis are related to requirements concerning mechanical strength and lightness of structures, being difficult to satisfy at the same time. The suspension system used in the high mobility wheel platform in question represents a typical design, comprising a frame made of high‑strength steel and based on stringers. The high mobility wheel platform’s suspension system uses reinforced parabolic leaf springs and half-elliptic springs as the elastic elements, whereas shock absorbers and stabilisers as the damping and propelling elements, aimed to reduce tilts of the vehicle body while driving in a curvilinear track. By shifting the front driving axle towards the front vehicle section, a higher approach angle could be obtained. On account of difficult operating conditions and for off-road driving purposes, specific solutions have been applied to protect the vehicle chassis against damage when moving in difficult terrain. Moreover, bearing in mind the vehicle’s intended use in military operations, where unplanned repairs of chassis components must often be conducted in the field, the designers have taken the necessity of using a very limited set of tools into account.

Keywords: high mobility wheel platform, vehicle suspension, spring elements.

References

[1]        Burdzik R., Konieczny Ł. Research on structure, propagation and exposure to general vibration in passenger car for different damping parameters. Journal of Vibroengineering, Vol. 15, Issue 4, 2013, p. 1680‑1688.

[2]        Dąbrowski Z., Dziurdź J., Klekot G. Studies on propagation of vibroacoustic energy and its influence on structure vibration in a large-size object. Archives of Acoustics, Vol. 32, Issue 2, 2007, p. 231‑240.

[3]        Konieczny Ł., Burdzik R., Figlus T. The possibility to control and adjust the suspensions of vehicles. Communications in Computer and Information Science, Vol. 395, 2013, p. 378‑383.

[4]        Konieczny Ł., Burdzik R. Comparison of characteristics of the components used in mechanical and non-conventional automotive suspensions. Solid State Phenomena, Vol. 210, 2014, p. 26‑31.

[5]        Konieczny Ł., Burdzik R., Węgrzyn T. Analysis of structural and material aspects of selected elements of a hydropneumatic suspension system in a passenger car. Archives of Metallurgy and Materials, Vol. 61, Issue 1, 2016, p. 79‑84.

[6]        Prochowski L., Żuchowski A. Automotive Vehicles. Heavy Truck and Buses. WKŁ, Warsaw, 2004.

[7]        Rill G. Road Vehicle Dynamics: Fundamentals and Modeling. CRC Press, 2012.

[8]        Burdzik R., Konieczny Ł., Adamczyk B. Automatic control systems and control of vibrations in vehicles car. Communications in Computer and Information Science, Vol. 471, 2014, p. 1865‑929.

[9]        Burdzik R., Konieczny Ł. Application of vibroacoustic methods for monitoring and control of comfort and safety of passenger cars. Solid State Phenomena, Vol. 210, 2014, p. 20‑25.

[10]     Giliomee C. L. Analysis of a Four State Switchable Hydro-Pnumatic Spring and Damper System. University of Pretoria, 2005.

[11]     Szczęśniak G., Nogowczyk P., Burdzik R. Some basic tips in vehicle chassis and frame design. Journal of Measurements in Engineering, Vol. 2, Issue 4, 2014, p. 208‑214.

[12]     Materials provided by Szczesniak Pojazdy Specjalne.

[13]     Ostrowski T., Nogowczyk P., Burdzik R. The constructional solutions for absorption of vibration in special vehicles operated in terrain. Vibroengineering Procedia, Vol. 3, 2014, p. 249‑253.

[14]     Szczęśniak G., Nogowczyk P., Burdzik R., Konieczny Ł. Requirements for construction of the bodies of special vehicles. Scientific Journal of Silesian University of Technology, Series Transport, Vol. 87, 2015, p. 73‑79.

[15]     Szczęśniak G., Nogowczyk P., Burdzik R., Konieczny Ł. Application of mounting frames in special vehicles. Scientific Journal of Silesian University of Technology, Series Transport, Vol. 87, p. 81‑86.

[16]     http://dziennikzbrojny.pl/artykuly/art,5,20,8,wojska-ladowe,wozy-opancerzone,kolowy-transporter-opancerzony-rosomak

Cite this article

Szczęśniak Grzegorz, Nogowczyk Paulina, Burdzik Rafał, Konieczny Łukasz Analysis of the chassis design for a high mobility wheel platform. Journal of Measurements in Engineering, Vol. 4, Issue 2, 2016, p. 52‑57.

 

Journal of Measurements in Engineering. June 2016, Volume 4, Issue 2

© JVE International Ltd. ISSN Print 2335-2124, ISSN Online 2424-4635, Kaunas, Lithuania