107. Analysis of free vibration of non-homogenous trapezoidal plate with 2D varying thickness and thermal effect

Ashish Kumar Sharma1, Amit Sharma2, A. K. Raghav3, Vijay Kumar4

1Department of Mathematics, IEC University, Baddi, H.P., India

2, 3, 4Department of Mathematics, Amity University Haryana, Gurgaon, India

1Corresponding author

E-mail: 1ashishk482@gmail.com, 2dba.amitsharma@gmail.com, 3akraghava@gmail.com, 4vijaykumar.goldy@gmail.com

Received 6 September 2015; received in revised form 28 September 2016; accepted 25 October 2016

DOI https://doi.org/10.21595/jme.2016.16378

Abstract. The present of goal investigation is to study the effect of 2D linearly varying temperature on the vibrations of non-homogeneous trapezoidal plate whose thickness also varies linearly in both directions and density varies linearly in one direction. Boundary condition which is C-S-C-S with two term deflection is taken into consideration. Rayleigh-Ritz method is used to find the solution of the problem. The effect of other plate parameters such as non-homogeneity constant, taper constant and aspect ratios have also been studied. Results are calculated with accuracy and presented in tabular graphical form.

Keywords: thermal gradient, non-homogeneity, vibration, trapezoidal plate, thickness.

References

[1]        Zenkour A. M. An exact solution for the bending of thin rectangular plates with uniform, linear, and quadratic thickness variations. International Journal of Mechanical Sciences, Vol. 45, Issue 2, 2003, p. 295‑315.

[2]        Tomar J. S., Gupta D. C., Jain N. C. Axisymmetric vibrations of an isotropic elastic non‑homogeneous circular plate of linearly varying thickness. Journal of Sound and Vibration, Vol. 85, Issue 3, 1982, p. 365‑370.

[3]        Tomar J. S., Gupta D. C., Jain N. C. Free vibrations of anisotropic non-homogeneous infinite plate of parabolically varying thickness. International Journal of Pure and Applied Mathematics, Vol. 15, Issue 2, 1984, p. 220‑221.

[4]        Srinivas S., Joga Rao C. V., Rao A. K. An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates. Journal of Sound and Vibration, Vol. 12, Issue 2, 1970, p. 187‑199.

[5]        Saliba H. T. Transverse free vibration of fully clamped symmetrical trapezoidal plates. Journal of Sound and Vibration, Vol. 126, Issue 2, 1988, p. 237‑247.

[6]        Orrisand R. M., Petyt M. A finite element study of the vibration of trapezoidal plates. Journal of Sound and Vibration, Vol. 27, Issue 3, 1973, p. 325‑344.

[7]        Qatu M. S. Natural frequencies for cantilevered laminated composite right triangular and trapezoidal plates. Composites Science and Technology, Vol. 51, Issue 3, 1994, p. 441‑449.

[8]        Kitipornchai S., Xiang Y., Liew K. M., Lim M. K. A global approach for vibration of thick trapezoidal plates. Computers and Structures, Vol. 53, Issue 1, 1994, p. 83‑92.

[9]        Gupta A. K., Sharma S. Thermally induced vibration of orthotropic trapezoidal plate of linearly varying thickness. Journal of Vibration and Control, Vol. 17, Issue 10, 2011, p. 1591‑1598.

[10]     Khanna A., Sharma A. K. A computational prediction on vibration of square plate by varying thickness with bi-dimensional thermal effect. International Journal of Emerging in Engineering and Development, Vol. 2, Issue 3, 2012, p. 191‑196.

[11]     Khanna A., Sharma A. K. Effect of thermal gradient on vibration of visco-elastic plate with thickness variation. American Journal of Computational and Applied Mathematics, Vol. 2, Issue 1, 2012, p. 34‑36.

[12]     Khanna A., Sharma A. K. Mechanical vibration of visco-elastic plate with thickness variation. International Journal of Applied Mathematical Research, Vol. 1, Issue 2, 2012, p. 150‑158.

[13]     Khanna A., Kaur N., Sharma A. K. Effect of varying Poisson ratio on thermally induced vibrations of non-homogeneous rectangular plate. Indian Journal of Science and Technology, Vol. 5, Issue 9, 2012, p. 3263‑3267.

[14]     Khanna A., Sharma A. K. Analysis of free vibrations of VISCO elastic square plate of variable thickness with temperature effect. International Journal of Applied Engineering Research, Vol. 2, Issue 2, 2011, p. 312‑317.

[15]     Sharma Subodh Kumar, Sharma Ashish Kumar Rayleigh‑Ritz method for analyzing free vibration of orthotropic rectangular plate with 2D thickness and temperature variation. Journal of Vibroengineering, Vol. 17, Issue 4, 2015, p. 1989‑2000.

[16]     Sharma Subodh Kumar, Sharma Ashish Kumar Mathematically study on vibration of visco‑elastic parallelogram plate. Mathematical Models in Engineering, Vol. 1, Issue 1, 2015, p. 12‑19.

Cite this article

Sharma Ashish Kumar, Sharma Amit, Raghav A. K., Kumar Vijay Analysis of free vibration of non‑homogenous trapezoidal plate with 2D varying thickness and thermal effect. Journal of Measurements in Engineering, Vol. 4, Issue 4, 2016, p. 201‑208.

 

Journal of Measurements in Engineering. December 2016, Volume 4, Issue 4

JVE International Ltd. ISSN Print 2335-2124, ISSN Online 2424-4635, Kaunas, Lithuania